35th INTERNATIONAL COTTON CONFERENCE BREMEN 2021

Presentation

Session: Cotton Quality & Testing 2 (T5)

Title: Stickiness measurement in the cotton quality testing

Speaker: Gabriele Salvinelli, MESDAN S.p.A., Puegnago del Garda, Italy

Presentations are available on the conference archive: https://baumwollboerse.de/en/cotton-conference/lectures/

Conference Organization

Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: conference@faserinstitut.de
Bremer Baumwollboerse, Bremen, Germany. E-Mail: info@baumwollboerse.de

CONTEST-S

Stickiness Measurement in the Cotton Quality Testing

COTTON QUALITY & TESTING 2 (T5), MARCH 18, 2021

GABRIELE SALVINELLI

R&D DIVISION, MESDAN LAB

- Instrument Description & Function Principle
- Test Volume in Field Testing
- ITMF-ICCTM RECOGNITION
- REPEATABILITY & REPRODUCIBILITY
- CORRELATION WITH REFERENCE METHODS
- INTER-LABORATORY VARIABILITY
- FINAL SUMMARY

STICKINESS TESTING METHOD

recognized

see: www.itmf.org

UNI EN 14278-3

USEFULNESS / BENEFITS

J	Measure and classify sticky points in cotton fiber
	Fully automatic high-speed tester;
	Spinning-like preparation of samples (cotton web);
	Thermodetector at typical T(°C) of spinning mill machines;
	Large mass testing for bale characterization before spinning;
	Reduction of the risk of issues during spinning due to stickiness;
	Almost operator-independent.

RANGE OF APPLICATION:

□ 100% raw cotton fibers (also sliver can be processed); ☐ From short to extra-long staple fibers (20 mm < UHML < 40 mm).

RECOGNITED PARAMETER:

■ Stickiness Grade

NECESSARY SURROUNDING:

- Standard atmosphere, ASTM D1776 (21 \pm 1°C, 65% \pm 2% RH);
- Pre-conditioning for at least 24 hours.

- Remove <u>large</u> foreign particles (barks / entire seeds);
- Fluff the fibers to eliminate dense clumps or knotty balls;
- Weight a portion of **3.5** ± **0.2 g**;
- Stretch the fibers, as to reach the proper length of 30 ± 3 cm;
- Roll the material to obtain a cylindrical shape;
- Insert the sample onto the conveyor belt.

CONTEST-S MEASURES ONLY STICKINESS

• Sample preparation: 30 sec

• Sample transfer: 20 sec

• Testing time: 30 sec

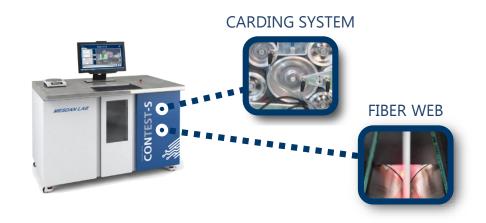
CONTEST-F IS A HIGH VOLUME COTTON TESTING EQUIPMENT, WHICH INTEGRATES THE STICKINESS TESTER

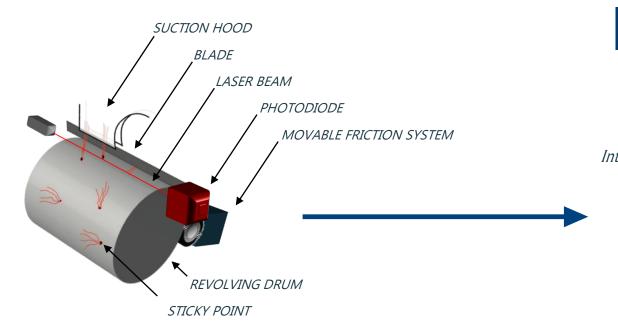
Additional parameters:

- UHML, UI, Strength, Elongation, SFI, Moisture
- Rd, +b, Color Grade
- Trash Count, Trash Area, Leaf Grade
- Micronaire, Maturity, Fineness

Stickiness measurement

• Sample preparation: 30 sec


• Sample transfer: 30 sec

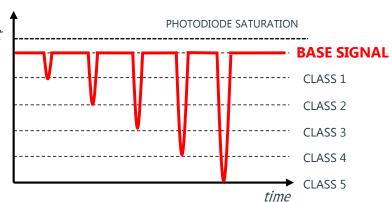

Testing time: 60 sec

PARAMETERS AND DEFINITIONS

Stickiness Count (St Cnt) [1/g]: tot num. of sticky points

St Count 1 [1/g]: num. of sticky points of CLASS 1 St Count 2 [1/g]: num. of sticky points of CLASS 2 St Count 3 [1/g]: num. of sticky points of CLASS 3 St Count 4 [1/g]: num. of sticky points of CLASS 4

St Count 5 [1/g]: num. of sticky points of CLASS 5

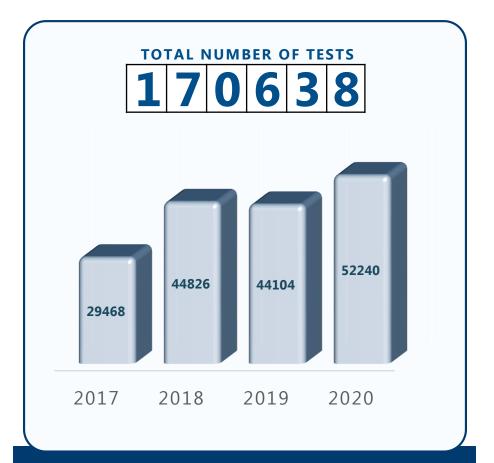

st count 5 [1/g] . Hum. of sticky points of class 5

St Avg Size (St Size) [a.u.]: the mean class of St Cnt

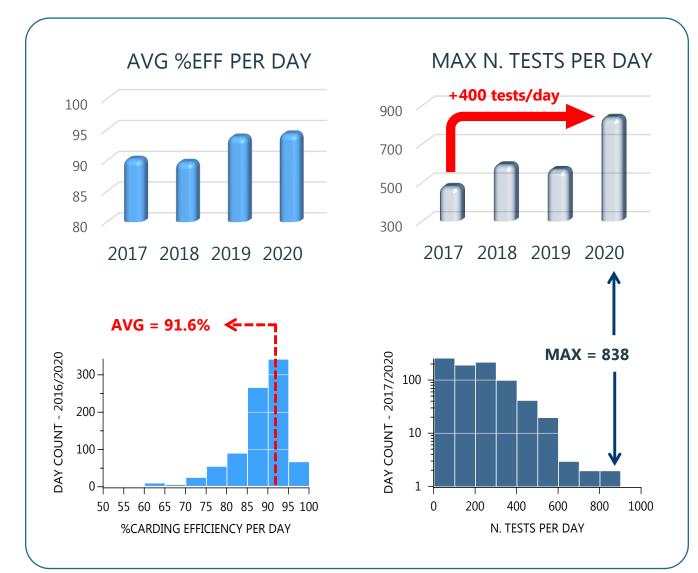
STICKINESS GRADE (St Grade) = $\sum_{i=1}^{5} (i \cdot S_i)$

 S_i = num. of sticky points of class i

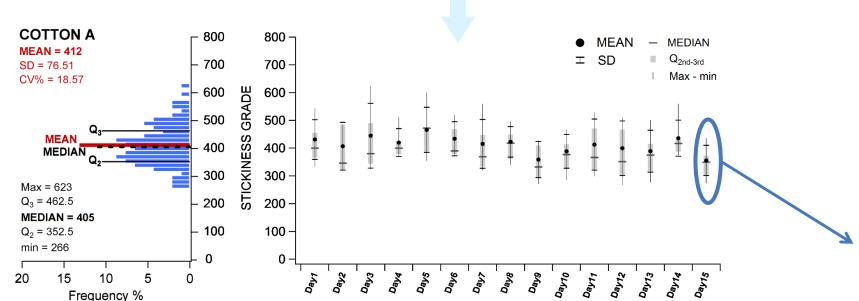
ITFM – International Committee on Cotton Testing Methods Recognition


The <u>Stickiness Testing Method for Contest Instruments</u> is a method for the <u>determination</u> of the <u>stickiness</u> of cotton, based on the thermo-mechanical principle on an automatically prepared thin fibre web.

Recognition of a testing method or instrument means that according to the Committee the instrument manufacturer has provided sufficient information and results from instrument comparison of multiple testing units in order to assess whether the instrument can be usefully applied in textile mills or for research purposes.


APRIL 2020

- ENHANCED VOLUME TEST
- IMPROVED CARDING EFFICIENCY
- Doubled Max Num. Test Per Day in 4 Years



- 5 cotton samples, A-E*
- Fully covered the detection range
- 6 tests/sample for 15 consecutive days (3 weeks)
- Alternating testing sequence (A₁, B₁, ..., D₆, E₆)
- Same operator
- Same instrument (CONTEST-S)
- Same laboratory (at manufacturer)

ANOVA (ANALYSIS OF VARIANCE) of daily mean values between the 3 weeks

COTTON	F-calculated	F(0.95;2;12)	EVALUATION
Α	0.8510		No significant difference between weeks
В	0.7953		No significant difference between weeks
С	2.7441	3.8853	No significant difference between weeks
D	0.6699		No significant difference between weeks
E	0.2980		No significant difference between weeks

сотто	COTTON A (6 tests)									
Day	min	Max	Q2	Q3	Median	Mean	SD	CV%	T (°C)	RH(%)
1	334	544	366	455	400	431	71.4	16.6	21.1	66
2	319	486	320	485	346	407	86.2	21.2	21.3	65
3	323	623	343	490	380	445	116.9	26.3	21.3	66
4	372	513	379	425	400	420	50.3	12.0	21.3	66
5	354	600	386	476	472	466	81.4	17.5	21.4	66
Mea	n (of 5	days)				433.6			21.3	65.8
		5 days				431.0			21.3	66.0
		eviatio				22.7			0.11	0.45
CV%	betwee	en the	days			5.2			0.51	0.68
6	373	520	378	468	390	434	61.4	14.2	21.1	66
7	319	559	335	448	369	416	88.2	21.2	21.3	66
8	339	495	363	449	418	423	55.1	13.0	21.1	66
9	270	427	289	409	332	359	64.9	18.1	21.2	66
10	286	467	330	415	377	389	60.8	15.6	21.5	67
	n (of 5					403.9			21.2	66.2
		5 days				415.5			21.2	66.0
		eviatio				30.1			0.17	0.45
CV%	betwee	en the o	days			7.4			0.79	0.68
11	298	529	320	471	366	413	91.7	22.2	21.1	67
12	266	510	302	467	351	400	98.6	24.7	21.6	65
13	276	501	314	416	375	389	75.6	19.4	20.9	66
14	374	560	387	432	417	436 356	65.1	14.9	20.6	68
	15 273 435 302 373 349						54.2	15.3	21.2	65
	n (of 5					398.5			21.1	66.2
	Median (of 5 days)					399.7			21.1	66.0
		eviatio				29.7			0.37	1.30
CV%	petwee	en the	aays			7.4			1.76	1.97

(*) D = homogenized ; A-B-C-E = mixed

ASTM D1776 T = 21±1°C RH = 65±2%

COTTON D (6 tests per instrument)						
LABORATORY	MAI	NUFACTL	JRER	Cl	JSTOME	RS
LOCATION		ITALY		EU	ME	USA
INSTRUMENT	CS	CF	С	CF	С	C
TEMP (°C)	21.4	21.3	21.6	21.2	20.7	19.4
RH (%)	65.3	64.9	66.2	68.5	64.0	64.0
test 1	419	439	488	680	712	501
test 2	421	444	426	646	565	531
test 3	612	344	379	505	387	494
test 4	489	444	528	544	527	386
test 5	488	488	656	453	498	530
test 6	536	513	480	619	512	497
Mean	494	445	493	575	534	490
Median	489	444	484	582	520	499
SD	73.1	57.8	95.4	88.0	105.9	53.4
CV%	14.8	13.0	19.4	15.3	19.9	10.9
Q95%	73.0	57.8	95.3	87.9	105.8	53.4
Grand Maan	of all inc	trm.o.n.	to (6)		E0E 0	
Grand Mean Median of al			15 (0)		505.0 497.5	

Grand Mean of all instruments (6) 505.0

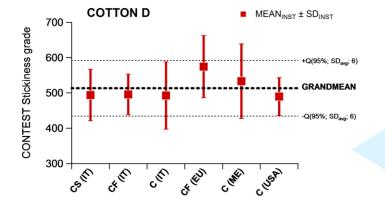
Median of all results (36) 497.5

SD of all results (36) 85.6

SD between instruments (6) 44.0

CV% between instruments (6) 8.7

4 different laboratories: manufacturer + 3 customers


6 different Stickiness Testers involved

- 5 cotton, A-E*, (35 g per sample per lab)
- Delivered with random labels
- Fully covered the detection range

6 tests/sample

EXAMPLE

- Alternating testing sequence (A₁, B₁, ..., D₆, E₆)
- Pre-conditioning of 48 h at least (ASTM D1776)
- Cleaning before starting the RT
- In one day by one operator

ANOVA (ANALYSIS OF VARIANCE) within/between instruments for each cotton

COTTON	F-calculated	F(0.95;5;30)	EVALUATION
Α	7 5.8316		Significant difference between instruments
В	1.8262		No significant difference between instruments
С	2.3177	2.5336	No significant difference between instruments
D	1.0486		No significant difference between instruments
Е	0.4029		No significant difference between instruments

(*) D = homogenized ; A-B-C-E = mixed

SHARING A SIMILAR PRINCIPLE OF FUNCTIONING

MECHANICAL DETECTOR

THERMODETECTOR

THERMODETECTOR

"The tendency of cotton fibers to stick to textile working surfaces"

UNI EN 14278-1 (SCT)
UNI EN 14278-2 (H2SD)
UNI EN 14278-3 (CONTEST)

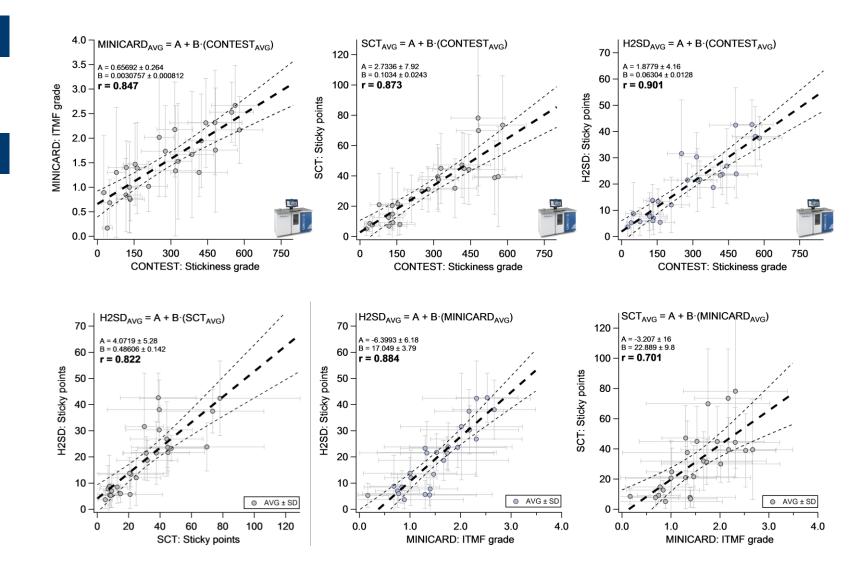
STICKINESS ROUND TRIAL FROM 2017-1 TO 2019-2

- 4 different methods (MINICARD, SCT, H2SD, CONTEST)
- About 23 instruments involved
- 26 homogenized samples by CIRAD
- 6 tests per cotton
- Recommended: alternating testing sequence
- Pre-conditioning 24-48 h in ASTM D1776 or ISO-139
- In one day and by one operator
 - !) DIFFERENT UNITS
 - (!) NO DIRECT COMPARISON AVAILABLE

WITHIN METHOD

Mean values for each RT cotton

BETWEEN METHOD


• Bravais-Pearson correlation r

		x-axis				
ſ		MINICARD	SCT	H2SD	CONTEST	
	MINICARD	1	0.701	0.884	0.847	
y-axis	SCT	0.701	1	0.822	0.873	
\-a	H2SD	0.884	0.822	1	0.901	
	CONTEST	0.847	0.873	0.901	1	

Conversion Rule :

Ref Method =
$$A + B \cdot Contest$$

METHOD	r	Α	В
H2SD	0.901	1.8779	0.06304
SCT	0.873	2.7336	0.1034
MINICARD	0.847	0.65692	0.0030757

WITHIN METHOD

Mean values for each RT cotton

BETWEEN METHOD

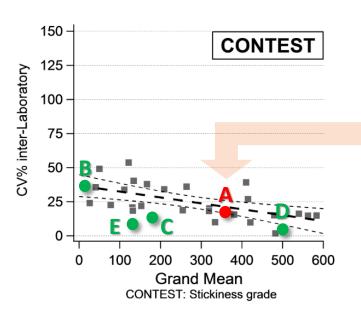
• Bravais-Pearson correlation r

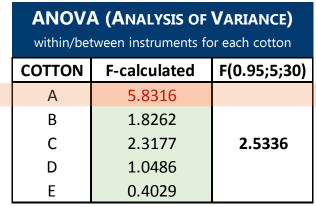
			X-6	axis	
	ſ	MINICARD	SCT	H2SD	CONTEST
	MINICARD	1	0.701	0.884	0.847
y-axis	SCT	0.701	1	0.822	0.873
y-a	H2SD	0.884	0.822	1	0.901
	CONTEST	0.847	0.873	0.901	1

Conversion Rule :

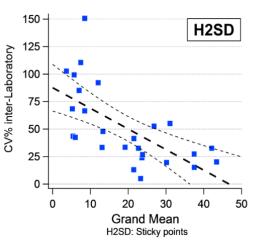
REF METHOD =
$$A + B \cdot CONTEST$$

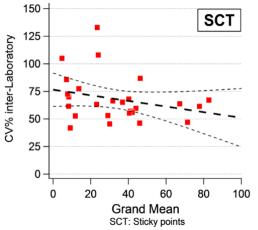
METHOD	r	Α	В
H2SD	0.901	1.8779	0.06304
SCT	0.873	2.7336	0.1034
MINICARD	0.847	0.65692	0.0030757

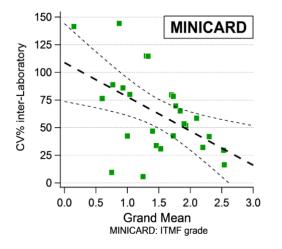




FOR EACH COTTON OF THE STICKINESS ROUND TRIAL FROM 2017-1 TO 2019-2


- Inter-Laboratory CV% of mean values
- vs Stickiness Grand Mean
- Direct comparison among methods
- Independent of method unit


METHOD	₹ Total Ter Test
CONTEST	25.0%
H2SD	51.6%
SCT	68.0%
MINICARD	62.8%



STICKINESS GRADE				
CV%(6)	GMEAN (6)			
23%	358			
34%	28			
14%	187			
9%	505			
11%	136			

- ☐ 4 year field testing >170000 tests
- ☐ Carding Efficiency > 90%
- ☐ Max num. tests > 800/day
- ☐ ITMF-ICCTM recognized in April 2020
 - 5 cotton samples (homogenized/mixed)
 - 26 homogenized cottons (ITMF Stickiness RT)

□ REPEATABILITY PASSED

- ANOVA: 5/5 samples
- 15 days

COTTON	F-calculated	F(0.95;2;12)	EVALUATION
Α	0.8510		No significant difference between weeks
В	0.7953		No significant difference between weeks
С	2.7441	3.8853	No significant difference between weeks
D	0.6699		No significant difference between weeks
Е	0.2980		No significant difference between weeks

☐ REPRODUCIBILITY PASSED

- ANOVA: 4/5 cottons
- 6 instruments

COTTON	F-calculated	F(0.95;5;30)	EVALUATION
Α	5.8316		Significant difference between instruments
В	1.8262		No significant difference between instruments
С	2.3177	2.5336	No significant difference between instruments
D	1.0486		No significant difference between instruments
Ε	0.4029		No significant difference between instruments

□ REFERENCE METHODS & ROUND TRIALS

- 3 reference: SCT, H2SD, MINICARD
- High correlations with all methods

r		x-axis				
		MINICARD	SCT	H2SD	CONTEST	
	MINICARD	1	0.701	0.884	0.847	
axis	SCT	0.701	1	0.822	0.873	
y-a	H2SD	0.884	0.822	1	0.901	
	CONTEST	0.847	0.873	0.901	1	

Lowest CV% inter-lab

<i>CV</i> _{inter Lab}		
25.0%		
51.6%		
68.0%		
62.8%		

ACKNOWLEDGEMENTS

MASSIMO SAVOLDI, TEXTILE ENG.
ANTONIO ZAMPATTI, EC. ENG.

Via Masserino, 6, 25080 Puegnago del Garda (BS) - ITALY Export Department: Tel +39-0365-653142 e-mail: sales@mesdan.it

www.mesdan.com

GABRIELE SALVINELLI, Ph.D.

MESDAN LAB - RESEARCH AND DEVELOPMENT

email: salvinelligabriele@mesdan.it

