35th INTERNATIONAL COTTON CONFERENCE BREMEN 2021

PASSION FOR COTTON! INTERNATIONAL Cotton CONFERENCE THE HYBRID EDITION | BREMEN 2021 | MARCH 17 - 18

FASERINSTITUT

FIBRE

M

E N

Session: Keynotes (K1)

Title: Climate Change: A storm in a teacup?

Speaker: Kai Hughes, ICAC - International Cotton Advisory Committee, Washington, DC, USA

Presentations are available on the conference archive: <u>https://baumwollboerse.de/en/cotton-conference/lectures/</u>

Conference Organization

Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: <u>conference@faserinstitut.de</u> Bremer Baumwollboerse, Bremen, Germany. E-Mail: <u>info@baumwollboerse.de</u>

Climate Change: A Storm in a Teacup?

Kai Hughes Executive Director International Cotton Advisory Committee

So What Causes Climate Change?

Deforestation for Land Use

Energy: Electricity & Petroleum Products

Chemicals: Fertilisers, Pesticides, Synthetic Fibres, Dyes etc.

What are the Effects of Climate Change?

Greenhouse gases (CO₂, CH₄, N₂O etc.) Temperature anomalies Rainfall patterns T Drought intensities Frequency of extreme events

1. What Causes Climate Change?

Deforestation for and Use Energy: Electricity & Stroleum Products Chemicals: Fertilizers, Pesticides, Synthetic fibres, Dyes etc.,

2. What are the Effects of Climate Change?

www.icac.org

Greenhouse gases (CO₂, CH₄, N₂O etc.) Temperature anomalies Rainfall patterns T Drought intensities Frequency of extreme events

Atmospheric CO₂ Concentration

Global Warming Projections

Rainfall Patterns Are Strongly Influenced by Global Warming

Percent change in heavy precipitation per degree warming

Fischer et al., Geophysical Research Letters, 2014

Top 3 Effects on Cotton

- 1. Temperature anomalies
- 2. Erratic rainfall patterns
- 3. Higher CO2 emissions

Impact of CO2 and Elevated Temperatures on Cotton

Cotton is a C3 plant

It can use high levels of CO₂ (900 ppm) for photosynthesis

ww.icac.org

Raja Reddy, 2020

Cotton grows well even at 820 ppm of CO₂

Raja Reddy, 2020

Scientific Studies Higher CO₂ Levels Benefit Cotton but High Temperatures Can Lower Cotton Yields

Raja Reddy, 2020

Optimum Temperature °C

>30°C reduces germination%

>38°C impedes growth rate Min Temp (night) >27°C causes sterile pollen, small bolls & boll shedding

Seedling Growth at Different Temperatures

20/12 25/17 30/22 35/27 40/32

Day / Night Temperatures °C

Raja Reddy, 2020

Higher Temperatures Decrease Boll Weight & Cause Poor Boll Retention

Optimum 24-27°C

Recalculated from Raja Reddy, 2020

Fibre Qualities

Higher Temperatures Affect Fibre Quality

Global Warming Will Decrease Seed Cotton Yield in Burkina Faso

Diarra, A et. al., 2017. African Journal of Agricultural Research, 12(7), pp.494-501.

Predicted Climate Change, GDP Interactions Across Africa

Subregions	GDP (% Change/Year)			
	1° C	2° C	3° C	4° C
North (n = 7)	-0.76 ± 0.16	-1.63 ± 0.36	-2.72 ± 0.61	-4.11 ± 0.97
West (n = 15)	-4.46 ± 0.63	-9.79 ± 1.35	-15.62 ± 2.08	-22.09 ± 2.78
Central (n = 9)	-1.17 ± 0.45	-2.82 ± 1.10	-5.53 ± 1.56	-9.13 ± 2.16
East (n = 14)	-2.01 ± 0.20	-4.51 ± 0.34	-7.55 ± 0.63	-11.16 ± 0.85
Southern (n = 10)	-1.18 ±0.64	-2.68 ± 1.54	-4.40 ± 2.56	-6.49 ± 3.75
Whole of Africa (n = 55)	-2.25 ± 1.52	-5.01 ± 3.30	-8.28 ± 5.12	-12.12 ± 7.04

Source: Adapted from Economic growth, development and climate change in Africa, published by the African Climate Policy Centre (ACPC) of the United Nations Economic Commission for Africa (UNECA)

www.icac.org

Water Requirements of Cotton

Cotton Needs 600-700 mm Water (6-7 million litres per hectare)

45-year Data in Cameroon

Gérardeaux, E., et.al.,2013. *Agronomy for sustainable development*, *33*(3), pp.485-495.

But Is It All Gloom and Doom for Cotton?

The Role of Cotton in Mitigating Climate Change Effects

Source: Cotton Incorporated (2009), Summary of life-cycle inventory data for cotton.

- Plants absorb CO₂ and sequester carbon in their biomass
- Cotton plants do more...they use CO₂ and H₂O to create cellulose
- Cotton fibres are 96-98% pure cellulose (C₆H₁₀O₅)_n
- Cotton sequesters 0.5 Kg additional CO₂ per Kg fibre produced
- Cotton is a C3 plant and has great capacity to use CO₂
- Organic cotton has very low carbon footprint

CO₂ eq Emissions in Life Cycle of a T-Shirt

Grace (2009). The impacts of carbon trading on the cotton industry.

Cotton Emits Fewer CO₂ eq of GHGs per Kg of Fibre in Production

www.icac.org

Moazzem et al., Journal of Fiber Bioengineering and Informatics 11:1 (20

Cotton Biodegrades in Soil in 12 Week; Polyester Does Not

Recycled Polyester T-Shirt

Cotton Jersey, Bleached, Softened

ww.icac.org

Recycled Polyester T-Shirt

Cotton Jersey, Bleached, Softened

Source: Cotton Works

100% Purified Cotton Composting (ASTM D6400)

TIME IN WEEKS

Cotton wipes biodegrade quickly in a composting container 100% cotton: 92 – 95% in four weeks Blend: Cotton biodegraded; Polypropylene did not

Sample #9

Cottonworks

Textile Waste Management 1960-2015

In 12 weeks the landfills will be left with only the poorly degradable synthetic textiles

https://www.sewdynamic.com/pages/polyester-industry

What Can We Do to Make Cotton Resilient to Climate Change?

- Breed temperature-tolerant cultivars
- Reduce dependence on fertilisers & chemical pesticides
- Rejuvenate soil health through regenerative agriculture practices
- Promote cotton as a carbon-sequestering crop and an eco-friendly biodegradable fibre

www.icac.org

"Climate change is moving faster than we are. We must listen to the Earth's best scientists."

> Antonio Guterres UN Secretary General

Thank You

