

PRESENTATION

Session: Cotton Quality And Testing

Title: Stickiness and fiber characteristics related to fiber processing efficiency and yarn quality

Speaker: Jean-Paul Gourlot, CIRAD (France)

Conference Organisation Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: <u>conference@faserinstitut.de</u> Bremer Baumwollboerse, Bremen, Germany. E-Mail: <u>info@baumwollboerse.de</u>

Stickiness and fiber characteristics related to fiber processing efficiency and yarn quality

Jean-Paul GOURLOT ⁽¹⁾, Eric GOZÉ ⁽¹⁾, Michel GINER ⁽¹⁾, Axel DRIELING ⁽²⁾ ⁽¹⁾ CIRAD, UPR AÏDA, & AÏDA, Univ. Montpellier, CIRAD, Montpellier, France ⁽²⁾ Faserinstitut Bremen e.V. (FIBRE), Bremen, Germany

Stickiness: what is it, what are the incidences? (1/3)

 Deposits from insect honeydew mainly onto fibers; composed by several individual sugars

Pictures by Cirad

Stickiness: what is it, what are the incidences? (2/3)

Illustration by Lena Kölsch, FIBRE

Stickiness: what is it, what are the incidences? (3/3)

- Fibers + honeydew stick on machine parts such as cylinders
- Rolling-up and breaks affect spinning productivity (lower turnout)
- Un-evenness affects yarn quality
- Economical incidences (claims, discounts, reputation)
- Solutions exist
 - Choose cottons according to their stickiness
 - Blend origins in various percentages
 - Change spinning mills conditions: temperature and relative humidity

→Need reliable measurements

Stickiness: Measurements and harmonization of results

ITMF-ICCTM Harmonization of Stickiness measuring methods (SMM)

- Based on periodic international round-tests (RTs), thermomechanical Methods* demonstrated as valid for further steps
- Based on well-known materials having reference information to which all results could be compared to
- Based on which reference Method?
 - Mini card (not made anymore, not precise enough, ...)
 - Which thermo-mechanical method among others? Why? How?

* Cirad-H2SD; Cirad-SCT; Mesdan Contest-S with reference to ITMF-ICCTM minicard test

Stickiness: Measurements and harmonization of results

Decision (Bremen 2021):

- A good Stickiness Measurement Method (SMM) must be related to Stickiness in Practice (SIP) as recorded during spinning tests
- SIP is based on spinning productivity and yarn quality characteristics
 - Is there data about spinning using sticky materials?
 - Is there any published prediction equations?

➔ What are the known impacts of stickiness on spinning productivity and yarn quality characteristics?

Stickiness: Impacts on spinning productivity and yarn quality characteristics

Requirements:

- Spinnability of sticky materials with measured stickiness level
- Measured <u>spinning productivity</u> and <u>yarn quality</u> characteristics
- Microspinning and/or industrial spinning experiments

Questions raised:

- Are microspinning experiments valid to predict industrial spinnability?
- Are fiber characteristics <u>and/or</u> stickiness found as predictive of spinnability (in research and industrial contexts)?

Stickiness: Impacts on spinning productivity and yarn quality characteristics

- Microspinning experiments vs industrial spinnability
 - ➔Microspinning results predict well industrial RS spinning process (when no or few contaminants)

Balls W. L. (1920), Landstreet et al. (1959, 1962), El-Sourady et al. (1974), Krifa et al. (2003, 2005, 2006), Frydrych et al. (1999)

• Fiber characteristics (research and industrial)

→ Suitable relationships exist (not taking care of stickiness)

Ramey Jr et al. (1977), Ethridge et al. (1982), Gutknecht J. (1984), Drean et al. (1991), Frydrych et al. (1991, 1993), Deussen & Faerber (1995).

• Stickiness alone (research and industrial)

→ Suitable relationships exist (not taking care of fiber characteristics)

Fonteneau-Tamime, Frydrych et al. (2001), Hequet et al. (2007), Gourlot et al. (2016)

When we see these videos, may other answers exist?

All captures by Gourlot J.P., 2020 reprocessed in 2024

When we see these videos, may other answers exist?

Fiber characteristics must interact with stickiness

Bibliography:

However, no relationship found including both fiber characteristics AND stickiness

Microspinning, Cirad-LTC, ring-spinning, 20 tex yarn, 23°C & 55%RH All captures by Gourlot J.P., 2020 reprocessed in 2024

Objective of this research

To check if the association of fiber characteristics and

stickiness results in better explaining

- spinning productivity
- yarn quality characteristics

Experimental design

- 53 cottons
- Covering stickiness & fiber characteristics ranges
- Micro ring-spinning
- 55 or 58 %RH (maximizes stickiness impacts)
- 20 tex (Ne 30, Nm 50)
- Planned 2 replicates
- → 53 * 2 = expected 106 lines

Laboratory opening machine

2 x 1 fleece (L=1.75m each; tex=31000)

Mini-card

 2×1 fleece (L=1.75m; tex=57200) Drawing frame, pass 1 2×5 slivers (L=3.35m each; tex=5800) Drawing frame, pass 2 10 slivers (L=3.35m each; tex=2900) Drawing frame, pass 3 2 slivers (L=37.40m each; tex=2300)

Spinning frame

n bobbins (L=500 m each; tex=20)

Doubling

Position 1

Position 2

Experimental design: productivity records \rightarrow Y

= Attachment (A) Requires no human intervention No machine stop

= Rolling-up (R)

Requires human intervention to continue production of yarn No machine stop

> + breaks (B) Machine stop

+ required cleanings (C) Machine stop

Number of events at spinning frame = A+R+B+C (computed by km of yarn)

1

2

3

Experimental design: productivity records \rightarrow Y

Experimental design: yarn quality records \rightarrow Y

• Evenness Tester*: CV(%), thin (nb), thick (nb), neps (nb),... 100 m * 2.5 min / bob.

- Dynamometer**: yarn tenacity (cN/tex), elongation (%), ... 100 breaks / bob., 5000 mm/min, 500 mm gauge length
- > 1500 individual data lines

Experimental design: fiber quality records \rightarrow X

• SITC*: UHML(mm), ML (mm), UI%, Strength (cN/tex), elong (%)

- Fineness Maturity Tester**: Micronaire, maturity ratio, linear and standard fineness (cleaned fibers)
- Stickiness***: Number of sticky points

ACRICULTURAL RESEARCH FOR DEVELOPMENT

* Uster Technologies HVI1000/700 ** SDL Micromat *** Cirad-H2SD

Dataset and studied characteristics

106 expected lines of averages, but Covid & lab. constraints
→81 available data lines of averages

• Considered spinning and yarn characteristics (explained variables Y)

- <u>Productivity indicator</u>: **number of events / kilometer of yarn** Needs to transform raw counts into 'square roots of number of events per km'
- <u>Quality indicator</u>: **yarn tenacity (cN/tex)** Integrating characteristic or proxy for other yarn quality characteristics

Results: fiber characteristics $\rightarrow X$

Results: fiber characteristics $\rightarrow X$

Wide ranges of fiber characteristics

Independency from stickiness level

Results: productivity & yarn quality \rightarrow Y

21

FIBRE

Simple model: number of events/km vs sticky points

Complex model: number of events / km (sqr)

- Training dataset: 70% of the available lines using a D-optimal design
- Additive model fitted, with variables (UHML, UI, Mic, MR, H, and H2SD)
- Non-significant effects removed one after the other
- ➔ Linear effect of H2SD Stickiness
- → UHML: essential explanatory variable, non-linear effect

Complex model: number of events / km (sqr)

Training dataset*: sqr(observed) vs predicted:
r = 0.82

*: 70% lines from the original dataset

Complex model: number of events / km (sqr)

Complex model: number of events / km

Complex restricted model: number of events / km (sqr)

UHML < 30.5 mm (or 1.20 inch)

$\sqrt{\text{Number of Events / km}} =$ 13.613 + 0.080 × H2SD – 0.412 × UHML(mm) +/- two independent errors R²(adj) = 0.87 or r = 0.93

Two independent errors are independent of each other:

- Measurement error (one for each replicate), with SD = 0.757
- Prediction error (one for each cotton), with SD = 0.906

Simple model: yarn tenacity vs sticky points

cirad

Complex model: yarn tenacity

- New training dataset: 70% of the lines with D-optimal design
- Additive model fitted, 7 variables (UHML, UI, Strength, Mic, MR, H, and H2SD)
- Non-significant effects removed one after the other

Complex model: yarn tenacity: fiber characteristics effects

Complex model: yarn tenacity: additional stickiness effect

No restricted model

Discussion

- Concerning number of events per kilometer
 - Clear effect of UHML and stickiness on the number of observed events during spinning
 - Possibility to compensate some stickiness by an increase of UHML
- Concerning yarn tenacity
 - Clear effect of all fiber characteristics, probably due to structural changes in the yarns
 - Even though the influence of stickiness was not significant, possibility of a non-negligible effect on yarn strength for contaminated cottons
- Combining number of events per kilometer and yarn tenacity
 - Number of events increased with stickiness, but in a too limited manner as:
 => no impact on yarn structure (as thin, thick, or neps places under statistic analysis)
 => no increase in the number of place(s) of least resistance
 - => low change in yarn tenacity

Conclusion

Needed development of Stickiness Measuring Methods (but various approaches not always relevant) → Need for harmonization, based on spinning observations

Preliminary study conclusion: thermomechanical methods able to predicting yarn
productivity and quality yarn indicators

Needed confirmation of relationships fiber + stickiness characteristics, to stickiness-induced events and yarn quality characteristics

What we found:

For any given level of stickiness:

- The shorter the cotton, the more events (the lower yarn tenacity)
- The longer the cotton, the fewer events (the higher yarn tenacity)
- Fiber strength, maturity & linear fineness: interesting contributions for yarn tenacity

Perspectives

Available data on spinning productivity and yarn quality

- Harmonization of Stickiness Measuring Methods
- Continuation of international round-trials for harmonizing Stickiness Measuring Methods results by ITMF-ICCTM working group on stickiness
- Possible production of reference materials for checking the reading levels of the Stickiness Measuring Methods

With these results, need a funded project similar to 'HarCoStiC'?

- More materials
- More technological and finer determinations
- Additional various sources of contamination (by insects)
- Multiple locations of the studied insect honeydews
- More spinning test results...

Stickiness and fiber characteristics related to fiber processing efficiency and yarn quality

Jean-Paul GOURLOT, Eric GOZÉ, Michel GINER, Axel DRIELING

cirad

Acknowledgments to:

-Participating laboratories and material providers

-Funders for this work : CIRAD & FIBRE

-Serge Lassus, Gérard Gawrysiak, and Marie-Elyse Lapeyre for their expertise and strong support

Thanks for listening

We welcome your questions and comments

