

PRESENTATION

Session:

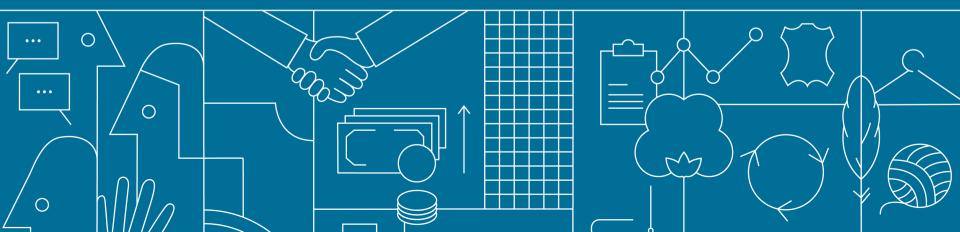
A Wider View

Title:

Sustainable Cotton Production Systems

Speaker:

Jens Soth, Senior Advisor Value Chains & Sustainable Helvetas (Switzerland)


Conference Organization

Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: conference@faserinstitut.de
Bremer Baumwollboerse, Bremen, Germany. E-Mail: info@baumwollboerse.de

Bremen Cotton Conference

20th March 2024, A wider view

Sustainable Cotton Production Systems

and their nuances – the case of environmental sustainability

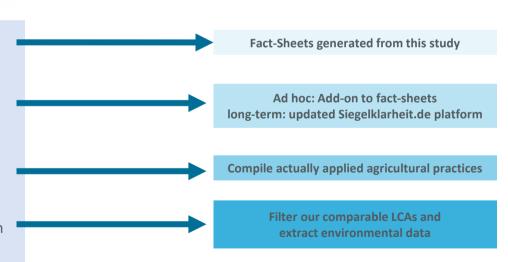
Guiding information for retailers, brands and other buyers

Jens Soth, HELVETAS Swiss Intercooperation

Components of today's presentation

- 1. Idea of the study project presented and key questions
- 2. LCAs as methodical approach and its limitations
- 3. Overview of results
- 4. Conclusions and recommendations

TOP 1
Idea of the study project
presented and key
questions



Entry point for the study and fact sheet work

«Cacophonia» of irritating and contradictory statements about the sustainability of textiles and fibres

- Demand to have updated overview material as quick reference
- Search for comprehensible and neutral information about differences of standards and labels
- Interest in understanding the nuances of sustainable cotton production systems
- Guidance to find the best purchase options (from environmental perspective)

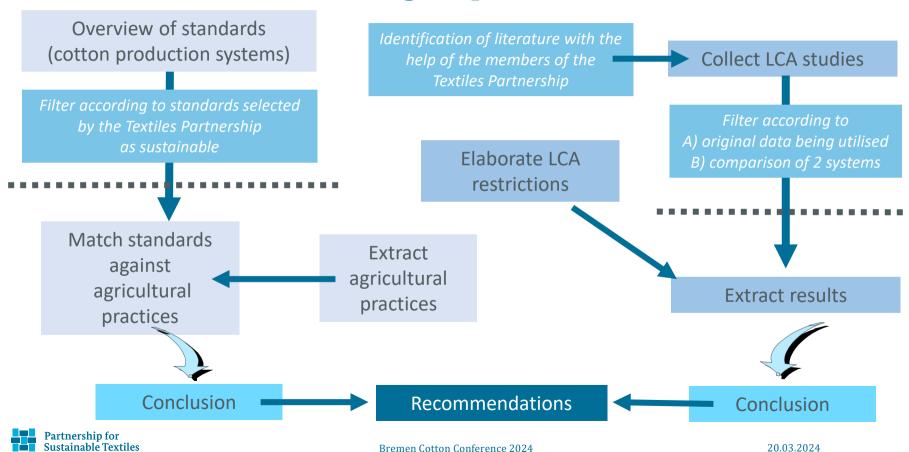
Important methodical difference

Most of the literature, websites, brochures look at the theory of standards.

Our study looks at the real implementation and thus ex-post collected data and identified environmental impacts!

Key questions for the LCA component

Does the theory of the standards translate into field level practice?

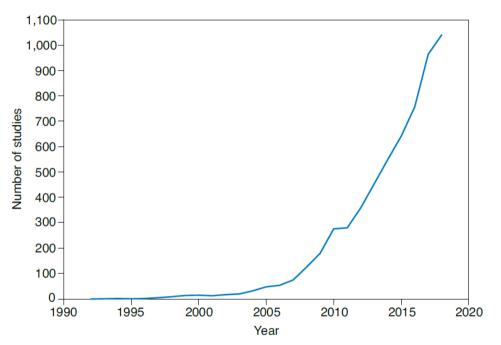

Or more specific for the environmental aspects:

Is there a proof for environmental improvements by following the sustainable cotton production guidance?

Are there differences between the standards?

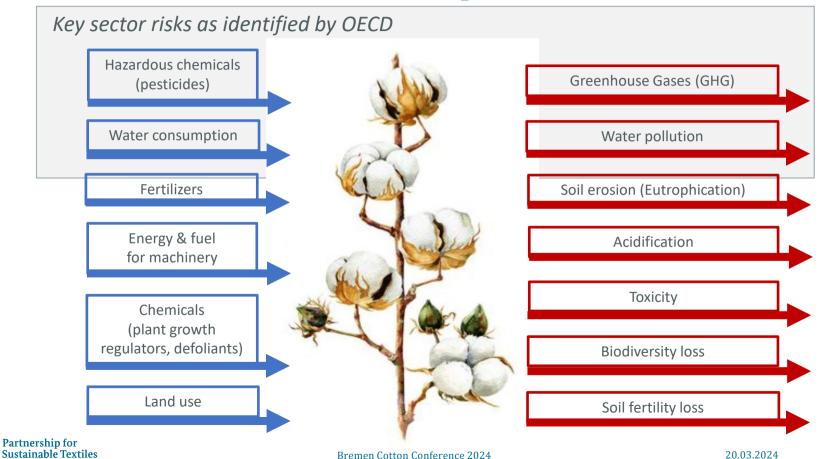
Structure and working steps

Key elements of agricultural practices occurring in most sustainable cotton standards



TOP 2 Ökobilanzen (=LCA) as methodical approach and its limitations

LCA as tool – "proliferation graph"



Attention: This entails all industry sectors, NOT only textiles

Source: van der Werf 2019

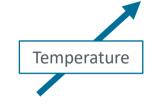
Environmental risks and impacts of cotton

LCA as tool - restrictions

- Pitfall 1: Agriculture is an open system
- Pitfall 2: Cotton has particularly broad variation of data
- Pitfall 3: Mixing of data should be avoided, but is common
- Pitfall 4: Impacts not accounted for
- Pitfall 5: Benefits not accounted for

Social aspects are not assessed or taken into account at all in LCAs

Example Pitfall 1: Agriculture as open system


Closed systems:

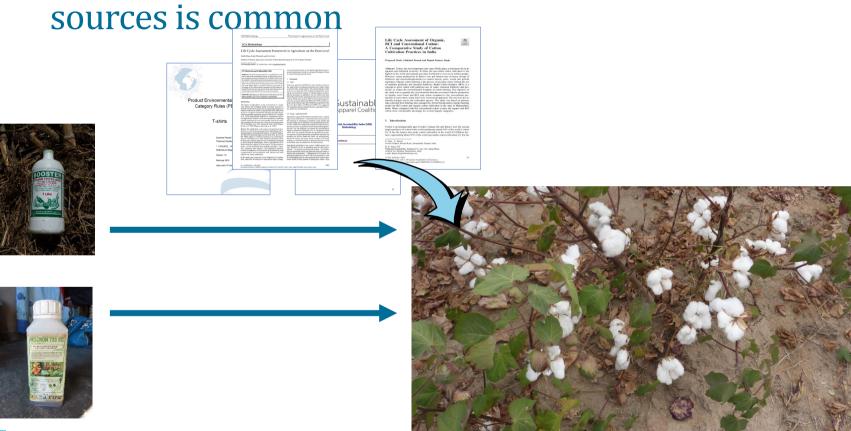
LCAs for chemical engineering

Replicable and controlled conditions (temperature, moisture, pressure, etc.)

Open system with broad variations with regard to influencing factors:

LCAs for agricultural systems

Conclusion: Much higher variations from farm to farm and season to season than LCAs usually have to deal with


Example Pitfall 2: Cotton has particular broad variation of data

Example Pitfall 3: Mixing of data from different

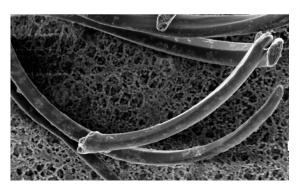
Example Pitfall 4: Impacts not accounted for

Marine Pollution Bulletin
Volume 112, Issues 1–2, 15 November 2016, Pages 39-45

Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions

Imogen E. Napper A ™, Richard C. Thompson

Show more V


+ Add to Mendeley 🗠 Share 🥦 Cite

https://doi.org/10.1016/j.marpolbul.2016.09.025

Get rights and content

Highlights

- Washing clothes made from synthetic materials is a potentially important source of microplastic into the environment.
- This study examined the release of fibres from common fabrics; polyester, polyester-cotton blend and acrylic.
- Fibre release varied according to wash treatment with various complex interactions.
- For an average wash load of 6 kg, over 700,000 fibres could be released per wash.

OCEANS

Microplastics in the seas

Concern is rising about widespread contamination of the marine environment by microplastics

By Kara Lavender Law¹ and Richard C. Thompson²

10.1126/science.1254065

11 JULY 2014 • VOL 345 ISSUE 6193 145

Example Pitfall 5: Beneficial aspects not

accounted for

Home » Our Field Level Results and Impact » Key Sustainability Issues » Water Stewardship

Diversified, resilient landscape with high recreational value

Advantages of collective action for water stewardship

better cotton

LCA as tool - restrictions

Pitfall 1: Agriculture is an open system

Pitfall 2: Cotton has particularly broad variation of data

Pitfall 3: Mixing of data should be avoided, but is common

Pitfall 4: Impacts not accounted for

Pitfall 5: Benefits not accounted for

Conclusions:

- LCAs require a lot of caution with regard to the generalization and transfer of their results
- LCAs do not give the full picture of environmental issues and particularly do not reflect benefits of production systems

TOP 3Overview of results

Collection of textile and cotton LCAs

More than More than 80 scientific articles or studies since 1999

39 studies have utilised original field data

11 studies allowed comparisons between standards

lst J Life Cycle Assess (2014) 19:331-356

FE CYCLE IMPACT ASSESSMENT (LCIA)

LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane

Natascha M. van der Velden - Martin K. Patel

Received: 23 October 2012 / Accepted: 5 July 2013 / Published online: 4 September 2012 / September Valles: Market Market Design 2013

National Vivgen: The purpose of this paper is to provide an improved propose of this paper is to provide an improved propose and the propose of the propose of the propose propose of the propose of the propose of the propose propose of the propose of the propose of the propose propose of the propose of the propose of the propose propose of the propose of the propose of the propose to the propose of the propose of the propose to the propose of the propose of the propose propose of the propose of the propose of propose or propose and twole companies. The conjustic propose of the propose of the propose of propose or propose or propose of the propose of the

controls fourpoint, consideries surge demand (CID), and ReCP(e et damage bened indication). Rembe and discussion From an analysis of the data, it before the control of the control of the control of the Recht and discussion From an analysis of the control and clusters) but also of the hickness of the yars (for this research, the maps of 19–500 date is examined. The arthurpropose that the environmental between of spiring, wearing, propose that the environmental between the spiring, wearing, analysis first are researced extraction to descend be stolled demonstrates that textiles made out of any) and FET have the last impact on the convincents, followed by plantane,

Reponsible obioe: Marzia Tasseso

N. M. von der Velden (EG) - J. G. Vegtlinder
Department of Donign for Stationability, Faculty of Industrial
Design Engineering, Technical University Delft, Landbergetrant
15, 550 of CE July T. Pack Metabolist

M. K. Patel Capernius Institute of Sustainable Development, F. Geoscionees, Utroeld University, Budapestlass 6, 33 spine, and conton. The use plane has less relative impact
than it is suggested in the classical filtrature. Using a fine for Constitution The surprise of possing and surprise of the concention of the surprise of possing and surprise of the first of the contraction of the contract of the contract of the contraction of the contract of the contract of the first of the contraction of the contract of the contract of the contraction of the contract of the contract of the contraction of the contract of the contract of the contract of the con
traction of the contract of the contract of the contract of the con
traction of the contract of the contract of the contract of the con
traction of the contract of the contract of the contract of the con
traction of the contract of the contract of the con
traction of the contract of the contract of the con
traction of the contract of the contract of the con

tensor of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

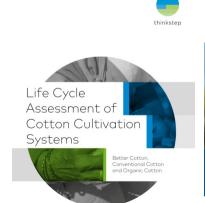
contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con

contract of the contract of the contract of the con


contract of th

Keywords Carbon dioxide (CO₂) · Clothing · Eco-co Fibers · Spinning · Textile · Use phase · Weaving

rs I Introdu

In cross 1 years, life cycle assessment (LCA) has been consisting highest by twith and appear (companies. Matures in E., Leuring, Arbonas, Deposit, producers of Rostures in E., Leuring, Arbonas, Deposit, producers of Rosnaturia (E., Estenderlike, Danes, Hospard), fashion hes (saided in the Saintander, Appear Caudinas), and venmental impass of twithers and products, and venmental impass of twitherstand products. In addition, and mental impass of twitherstand products. In addition, and mental impass of twitherstand products in addition, and mental impass of twitherstand products. In addition, and products in the companies of the companies of the products in the companies of the companies of the picking up the signals from computes and other cognitions.

⊕ Springs



Life Cycle Assessment o Cotton made in Africa

REPORT March 2021

"Filtering" of textile and cotton LCAs – example of the method

			Filter criterion 1				Filter	criterio	on 2	
Year	Author	impact category or LCA (if more than 3 impact categories)	Products resp. functional unit	Operating with original Data	Year of collection	Country of cotton production	Conventional cotton (= no specified farming system or standard)	Org inic	BCI	CmiA
2013	Cardoso	LCA	wool and cotton yarn	yes	2011		х	X		
2013	Nalley et al.	GHG	cotton, pound - GMO, non GMO	yes	1997, 2005, 2008	US (Arkansas)	х			
2013	Aid by Trade Foundation	Carbon and water footprint	cotton, 1 kg lint	yes	??	CmiA countries, var. Cotton	х			Х
2013	WWF India and WWF UK	GHG	kg CO2e / ha ; kg CO2e / kg seed cotton	yes	2010	India (Warangal district)	x		(x)	
2014	van der Velden, Patel and Vogtländer	LCA	textiles, PE cotton , nylon, elastane	yes	2011-2012		х			

Comparing cotton LCAs – example of method

Colour code for the cells:

Sustainable cotton better

No comparison possible

Sustainable cotton and conventional equal

Sustainable cotton worse

Publication year	2015	2016	2018, 2019	2021	2021	
Author	Baydar, Ciliz and Mammadov	Cotton Incorporated	C&A Foundation, Shah, Bansal and Sing (same data, different publications)	Aid by Trade Foundation (utilising Cotton Inc 2016 as benchmark	Fidan, F. , Aydogan, E. and Uzal, N.	
Products resp. functional unit	T-Shirt, conventional and eco	cotton, MT fiber and 1000kg of finished garment	1 MT seed cotton at farm gate	1 t of fibre at gin gate	1 sqm denim fabric	
Country of cotton production	Turkey	US, China, India , Australia	India	RCI, Zambia, Cameroon	Turkey	
Standards	Organic, conventional	Conventional benchmarking basis	Organic, BCI, conventional	CmiA, conventional (Cotton Inc 2016 as benchmark)	Organic, conventional	
Relevant results	Organic T-shirt lower emissions in all impact categories	Highest impact throughout all impact categories from use phase followed by industrial processes	The only study that compares the systems organic, BCI conventional cotton in a defined region and thereby allowing direct comparisons	Rather than benchmarking, the study focused on the identification of hotspots for improvements	The study compared organic and conventional textile for a broad range of impact categories. Significantly lower impacts throughout all categories for the organic textile were proven	

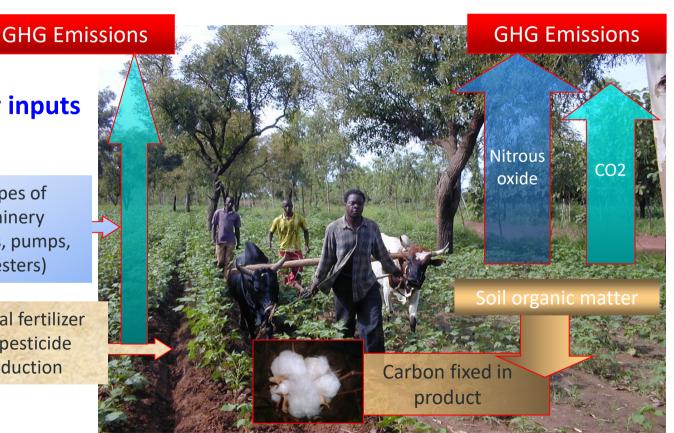
Results of LCA comparison: Visual impression

Colour code for the cells:

	Sustain	able o	otton bett	er No co	mparison	possible	Sustainab	le cotton a	nd convent	tional equa	l Sustai	Sustainable cotton worse		
	A .		c	D	E	,	G	н		,	ĸ	ı		
2	eblicalies grar	,	2815	2845	2815	2814	2814	2815	2816	2848, 2849	2121	2821		
,	4-11	Bala Bail[a]	Cardena	Aid by Trade Passdalisa	WWF Ladia and WWF UK	Callan made in Africa	Tralile Easkange	Pagdar, Cilinand Hamades	Callan lanarparaled	ChA Foundation, Shah, Dannal and Sing Joans data, different publications	Aid by Trade Feedalise Jaliliaing Calles Inc 2016 as brookmark	Fidan, F., Andagan, E. and Unal, H.		
	Producto rray. Familianal anit		gare, but for collection 1	eellee, 1 kg liel	bq COZe/ba; bq COZe/bq ared asllas	eellee, 1 HT liel	sallas, 1 HT list	T-Shirl, asseralismal	111th of finished	1HT ared colleg al farm gale	11 of fiber al gio gale	1 agas draias fabria		
s	Country of collec- production		Tajikislas	Prain, Parkina Fann, Calr Florier, Halawi, Honamkigor, Zankia, Camerono	ludia (Warangal dinlein))	Zambia, Imery Coast	ladis, Tarbrq, Chias, US, TZ	Tarkrq	US, Chies, India , Analestis	ledia.	RCI, Zambia, Campronn	Tarkeq		
	Slandardn		Organia, asserational	CaiA,	BCI (a BuP prodraman), exercitoral	CuiA, accordinas Calles les 2012 se brackusch	Organia, nameraliseal Calles les 2012 as brankmark	Orqueia, asserational	Consessional brookmarking kanin	Orqueia, BCI, esserational	CaiA, accordinad Calles les 2846 de breskadek	Orqueia, accordings		
,	Briresel reselle		Organia han lawer impant Ibeneghent all impant nategories, enorgh benan Inninity, where a high amount of beauguetals was natentated due to the nor of shinken manner	Slady featured as lbr impail salequeien waler and GHG	Perliliner management highly referrant for GHG refundion. Thus PCI equiem areq appropriate to lower Carbon footprint of culture	Eronion nonleal normaria applied eronaled high paleolial la foether reduce roleophinalian paleolial	Drining faulurs for releaphicalise impact are remine and solvirol tracking - thes organic equites reported as advantagence	Organia T-skirl lawer rainniana in all impant natequeira	Highest impact throughout all impact salequeirs from our phase fullourd by industrial processes	The only slody lbal assignment lbe appless arquin, PCI associated authorise a defined engine and thereby attouing dirent assignment.	Ralber Iban brooknarbing, Ibr olodg Foonerd on Ibr idealification of balopula for improvements	I be alsold unspaced in a second control to the second control to		
	c#c	Keqeraalla	Lourr input der le ansidanse of feeliliere and prolinides	CaiA GHG raississa siquificaellq lawer dar la difference in faraisq squira	Eminaine resulting from feeliliners are main deiner of GHG reliations	Luurr aarban faalprist dar la transr inputs and transr menkanisalisa	Laure arkan fealprial krankmarked against Callon lon 2842 of the argania agalem dae to krane inputs un agalbelia feeliliaren ar pealiaiden	Glabal warming palential highest extension for assertional and organia T-Shirt in our phase as major faults full our dip author padoution	Highest GHG emissions due to one phase full our d by industrial processes	Strangerdantian of GHG rationisms in organis der la laureringale; laurer rationism of PCI der la analented inputs	Laure GHG emissions due la leure and asales lled inpula	Laurr GHG raississe for organis fabris		
,	CBC [autual data]	by COZ rquinalral	annoralismal: 2.55 kg Cr / kg list arganis: 8,557 kg Cr / kg list	1.52 to 4.54 Co /Mg Rat	anneralissal: 1.5 kg Cr / kg arrd asllas heller management: 845 Cr / kg arrd asllas	1,837 by Cr / by For CuiA sollow list compared to 1,888 Cr / by concretional collow	1,371 kg Cr / kg for organic nollociful ompared to 1,881 Cr / kg occurational nolloc	75X ordenline of GHG for Eas T-Shirl		In COZe per 1888 hq ared nallan: Organia 255 DCI 455 nana 751	Farm in gin gale: Cui A: 1,24 kg / 1888 kg lint Cunnelineal: 1,43 kg / 1888 kg lint	In by COZe per nya Fabria: negania: 3,34 nonerolimaal : 4,28		
"	Waler Cassaglian	Keqeenalla	Plar uater adastation irrigation uater	Rainfed utaled an admontageous as unspaced In the irrigated agatems of the brookmark of Cultu- tus 2012 unspaced In irrigated utilia			Rainfed wlated an admatagence as empared to the ierigates equience of the brookmark of Cultur			Plur valer sassampliss maluslated fierigaliss valer[Plan water fireigation water[salustated, then existed in Cui A has "B"			
11	Wales plica Jackal dalaj	lilera of water equivates	Consessional: 1,25 m3 / bq Hall Organia: 8,34 m3 / bq Hall	14 = 5 C= : A 1 = 15.5 = 5 			lan 2012 anapared In irrigaled nallan			la a3 per 1888 by ared sallos: Organia 331 DCI 333 acceraliscal 541	CaiA: I Casaralisad: 1565 a5 pro 1888 kg list			
12	Tooisily Esologicily and / or Bonas assisily	Comparation Toxic Units (CTU)	Higher amoud of locivity [namer effect] organic der to be any weld in whicher manner [not merified locally] [nouer amoud of locity for any arrange effects				Tuninily undels replained and ancidence of prolinides replanied, but un data giern					Hamas luninilg, Frenk agualis eusluninilg, mariur agualis eusluninilg aud leveroleial eusluninilg		
13	Ealraphiasliaa	Kq of PO4 rquinalrol	annoralisasi: 8,88249 bq PO4r/bq list arquais: 8,88284 bq PO4r/bq list			2,84 kg PO47 kg CaiA lial aullan, bal anteresponding dalate, anil transiss kighly assertain	2,8 in organia an numpered In 5.8 POde per 1888 by Hall numeralismal	97X reduction as unspaced to unsurediscal due to ancidance of equitetion feelilines		la by PO4- per 1888 by ared calles organic: 8,46 PCI: 2.45 assertional: 731	Caria: 8,847 by PO4, energlised: 8,888 by PO4,	In by PO4+ / nyu Fabrin: I, III 21 annoraliana! I. III 45 argania		
14	4. :3:5:1:	bq of 502 rquinalral	Organis has lower impact albeit and international source will finite source shilling			For field to gio life agole: Field eminains must relevant fautor for anidification an ompared to gio and transport	S,87 by SO ry / 1888 by find an empared to 18,7 SO ry / 1888 by find emeralismal			la by 502-per 1888 by arrelaellas arquais:3,34 PCI: 12,14 associational: 14,86	CmiA: 8,828 by SOZ- encontinual: -,826 by SuZ-	la by 502+ / aga fabrio: 8,8428 annovalinaal 8.8837 argania		
	Farlber impaul malequeira annound		Onnerdeptelina, marine entraphinalina				Primary rarray drawed		- Pholoshemical Occur Ceralics Paleolial - Occur Depletion Paleolial - Homan Health		Diedierreilg Serearies for eeil earbee eleeke	akiuliu depleliuu, akiuliu depleliuu fuusil fuelu, aanne lagee depleliuu, pkuluukeminal usidaliuu		

Results of LCA comparison: Detailed look on GHG

Colour code for the cells:			Sustain	able o	cotton bett	er No co	mparison	possible	Susta	inable	cotton a	nd conven	tional equa	l Susta	inable cott	on worse
			A	Þ		D	E		٠		н	1	,	к	L	
		2 0.	ablicalies gras		2815	2815	2815	2814	2816	•	2815	2816	2848, 2849	2821	2821	
		,	4-11	Bala Bail[a]	Cardens	Aid by Trade Passdaline	WWF fadia and WWF UK	Callan made in Africa	Tralile Ea		Baqdar, Cilinand Hammadon	Callas lasarparaird	ChA Faundalion, Shab, Dannal and Sing [name dala, different publications]	Aid by Teade Panadalina Jalilining Calles Inc 2016 on brookmark	Fidan, F., Agdagan, E. and Unal, H.	
			redeele rrep. Seeslissel seil		gare, but for collection 1	selles, 1 kg liel	bq COZr/ba; bq COZr/bq arrd aallaa	selles, 1 HT liel	II, 1P	HT III	T-Skirl, assertlineal	1000kg of finished	1HT ared colleged form	11 of fibre al gio gale	1 aqui desin fabria	
		-	Canalan of			Prais, Parkins Fass, Calr										
GHG			Key resul	ts	avoidance of	pact due to fertilizers and icides	significa	GHG emissic antly lower di e in farming s	ue to		ission result fertilizer e main drive emissior	r of GHG	to lesser in	n footprint d outs and lesse anization	ue (benchm Inc 20 system	r carbon footprint arked against Cotton 12) of the organic due to lesser inputs athetic fertilizers or pesticides)
	GHG (actual data)		kg CO2 equivale	nt	li	2.93 kg Ce / k nt 7 kg Ce / kg lin		1.92 to 4.64 Ce /kg lint			entional:1.5 seed cott manageme kg seed cot	on nt :045 Ce /	cott compared t	e / kg for Cmi ton lint o 1,808 Ce / k onal cotton	g compa	g Ce / kg for organic cotton lint red to 1,808 Ce / kg ventional cotton
,		14	4 -::::::	bq of 502 rquinalral	Organia kan laure impant alkeil untinternational nonconsuit tinite nonparakitity			For field to gio life agale: Field emissions most referant fauter for anidification as suppored to gio and feasuport	S,87 kg SO ng /· an nompared lo / 1888 kg Kal an	48.750 +4			In by SOZ- per 1888 by aced cellus acquain: 3,34 PCI: 12,14 accordingsI: 14,85	Caria: 8,828 kg 502- eneralisest: -,825 kg Sa2-	la by 502+/ agai fabris: 8,8128 assertional 8.8837 argania	
		15	arlbre impaul aulequeira auceurd		Onner depletion, marine culcuphination				Primary r drmas	377		- Phalasheminal Onner Ceralian Paleolial - Onner Depletion Paleolial - Haman Health Paeliantale Air		Dindiarraily Suracrius for sail earhus eleebs	akiuliu depleliuu, akiuliu depleliuu Eusuil Euselu, uusus lages depleliuu, pkuluuksusisal usidaliuu	

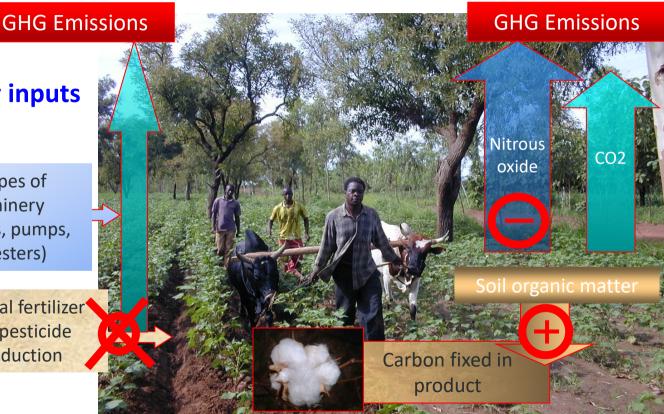


Major GHG components in cotton production

Energy inputs

All types of machinery (tractors, pumps, harvesters)

> Mineral fertilizer and pesticide production

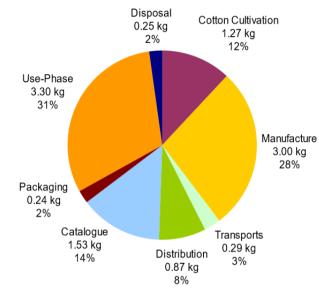


Major GHG components in cotton production

Energy inputs

All types of machinery (tractors, pumps, harvesters)

> Mineral fertilizer and pesticide production



GHG conclusions from LCA assessment

What is the functional unit – cotton or Textile?

- If you look at GHG and energy use of a textile, bear in mind that the hotspots of GHG footprint of a textile are
 - a) in the use phase
 - b) in the wet processing stages
- All sustainability standards that take care of a judicious management of inputs will fare much better

Source: Jungmichel 2010

- For small-farmer the adaptation is much more relevant than the mitigation
- Organic advantages could be lost by farmers handling manure or water unwisely

Results of LCA comparison: Detailed look on Water

Colour	code for the cells:	Sustain	ahla (cotton bett	er No.co	mparison	nossible	Suctaina	ole cotton a	and conven	tional equa	d Sucta	inable cott	on worse
colour code for the cells.		Justan	iable (· · ·	140 00	inparison	possible	Justania	I I	illa conven	, ,	, susta		on worse
		1		2115	2113	2015	2014	2814	2015	2016		2021	2021	_
		deller	**************************************	Cardena	Aid by Trade Passibiliss	WWF ladia and WWF UK	Calles made in Africa	Tralife Easkange	Pagdar, Cilinand Hammadon	Callan lanarparaled	2010, 2015 Chi Fenedaline, Shah, Paneal and Sing [name data, different publications]	Aid by Trade Poundaline alilining Colley Inc 2016 as brookmark	Piter B. Antonio P. ant	
		Fraduola erap.		gare, but for collection 1	selles, 1 kg list	bq COZe/ba; bq COZe/bq ared asllas	II, 1 HT II-I		T-Shirl, assertlineal	1111kg of Sinished	1HT ared selles al farm	11 of fiber al gio gale	1 agas denia fabeia	
		Country of collec- production		Tajibialaa	Prain, Parkins Fann, Calr Flanier, Halawi, Manamkigar, Zamkis, Camerona	ludia (Marangal dintrint)		ladis, Tarbrq, Chias, L TZ		US, Chies, Iedis , Analestis	ledia	RCI, Zambia, Cameronn	Tarkra	
		Slandards		Organia, annoralismal	CeiA,	BCI 2 BaP predesesses	CuiA, accordings Cultur for 2812 se breekeart	Organia, nameraliana Calles les 2812 as brooksaark	Organia, manaralismal	Constalianal brookmarking basis	Orqueia, BCI,	CaiA, secretional Calles for 2815 as breekmark	Organia, annocalismal	
		Refrasal erasila		Organis has lawer impast throughout all impast salequeries, energh human tunisity, where a high amount of branq metals was unfundated due to the accordinates manner	Sludy faceard as the impaul valequeiro water and GMG	Feeliliere management kightg refensati for GHG reduction. Thus DCI ngullem areq appropriate to toure Carkon footprint of units	Erusius usulrul usruariu applied erusaled high pulculial lu fuelbee erduus euleuphiualius	Drining faulure for retrophication impact remains and material tracking - the ergania against report an admontagement	Organia Trakiel laure	Highest impact throughout all impact salegories from see phace full said sidestrial processes	The only slody that assignment the system argusia, DCI associated sellar in a defined expine and thereby allowing direct assignments.	Ralber lban brookmarking, lbr olodg Found on lbr idealifeading of balapala for improvements	the sludg suspeed organic and suspeed tralife for a broad cauge of impact safequeires. Significantly lower impacts throughout all safequeire for the organic	
	1													
	Water Consumption Water consumption (actual data)		ults		er calculation ion water)	advantag the irrig benchma	Rainfed stated as advantageous as comp the irrigated systems benchmark of Cotton Ir compared to irrigated cotto		pared to s of the Inc 2012				advantag the irrig	infed stated as geous as compared to gates systems of the ark of Cotton Inc 2012
			vater ent	Orga	al: 1,29 m3 / k lint nic: 0,94 / kg lint	14	4 m3 (CmiA) t 13.3 m3 green water)							compared irrigated cotton
		lesisilg	[CTB]	lawer amount of lociails for any arrange of feeling				bel en dala giore					restanisity	
		Entrophicalian	Kq af PO4 rquinalral	eneralised: 8,88249 by PO4+ / by list engasis: 8,88284 by PO4+ / by list			2,84 kg PO4 / kg CaiA lial adlan, kal antroposiing dalare, neil rennius kighta antrolais	2,8 in organic accompa la 3,8 PO4e pre 1888 (liel accordina)			In by POde per 1999 by accid nellow organic: 8,46 PCI: 2,45 associational: 751	CaiA: 8,817 by PO4, secondinasi: 8,888 by PO4,	In by PO4r / nya Fabria: 8,8828 nonrollinad 8,8845 negania	
		4 .:3:6:1:	by of 502 rgainstrat	Organis has lower impact albeit out international access will limits comparability			Par field to give life agale: Pield emissions most referral factor for anidification an empared to give and fearsport	5,87 kg 50 rg / 1888 kg i an nempered in 18,7 50 / 1888 kg ital annealin			In by 502- per 1888 by need collect requair: 3,34 DCI: 12,14 assertional: 14,85	CmiA: 8,828 kg SOZ- esseralissal: -,826 kg SuZ-	la by 502+ / aga fabria: 8,8428 annoralisad 8.8857 argania	
D.	rtnership for	Farther impact adequeira accessed		Onner depletion, narior coleophicalism				Primary rarryy drmand		- Pholoshemical Ocuse Cecalisa - Palestial - Ocuse Depletica - Palestial - Human Health - Paeliculate Air		Diadiorraily Surveying for neil nerbon alanka	akislis depleliss, akislis depleliss funil Farls, anner lagre depleliss, pholoskenisal saidaliss	

Water consumption: Conclusion from LCA assessment

<u>Individual behaviour of farmer more relevant than differences between</u> the standards

- Water stewardship in place is the key aspect for the local water challenges
- Water stewardship is relevant for irrigated areas, but fully underestimated for rainfed areas
- Standards have a key role to implement water stewardship and train farmers on water saving practices
- Usually water savings of 20 to 40 % can be realized, with simple means, if the farmer can be incentivized
- Water quality is frequently overlooked in the water debate.
 Standards and organic have a very relevant role for that

Summary of results in a nutshell Slide 1 of 2

- Methodically properly conducted LCAs show: sustainable cotton initiatives (organic, BCI and CmiA) lower the environmental impact of cotton production when benchmarked to conventional peers.
- 2. The driving factor for better environmental performance: thoughtful and well managed utilization of agro-chemicals
- 3. Fairtrade was not included in the identified LCAs.
 As also the Fairtrade system has a focus on judicious use of fertilizers and pesticides,
 it can be assumed, that the environmental performance is likewise better as conventional peers.

Summary of results in a nutshell Slide 2 of 2

- 4. The only existing comparative LCA that evaluates organic, BCI and conventional cotton production can additionally prove that organic has the lowest environmental impact at least for the regional context the study was referring to.
- 5. The LCA data regarding toxicity are very incomplete. Doubtless organic would fare better, when proper toxicity comparisons would be conducted.
- 6. Water consumption as impact category is handled in very different ways and thus hardly to compare legitimately.

 Water stewardships in place (as done in BCI and CmiA) might be more relevant than the blue water footprint.

TOP 4 Conclusions and recommendations

Recommendations

Engage in the sustainable cotton sector

Rather than getting lost in differences between the standards a targeted engagement for sustainable cotton is key.

The Textiles Partnership standard recognition process gives space for the selection of relevant standards. Each standard contains different levels of social aspects, toxicity, water, climate, etc.

Embrace, support and demand data collections and compilations

Demanding, understanding and working with supply-chain data, particularly field and farmer data could bring benefits to the sector.

- For the fibre production sector:
 - Continuous improvement
- For the textile sector:
 - Due Diligence and risk management for supply-chain regulations becomes easier and more tangible
 - Long-term averages to be included into processing data or blockchains
 - Good basis to inform consumers and risk management for supply-chain regulations

Partnership for Sustainable Textiles

c/o Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Friedrich-Ebert-Allee 32+36 53113 Bonn

+49 228 4460 3560

mail@textilbuendnis.com

www.textilbuendnis.com

