

PRESENTATION

Session: Cotton Breeding, Production, Ginning

Title: **RFID Applications in Cotton Ginning**

Speaker: **Bobby Hardin,** Texas A&M University, USA

Presentations are available in the conference archive: <u>https://baumwollboerse.de/en/competencies/international-cotton-conference/speeches/</u>

Conference Organization

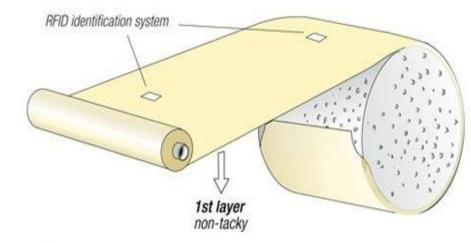
Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: <u>conference@faserinstitut.de</u> Bremer Baumwollboerse, Bremen, Germany. E-Mail: <u>info@baumwollboerse.de</u>

RFID Applications in Cotton Production and Ginning

Robert G. Hardin IV Zafar Iqbal Tianyi Wang Edward M. Barnes John D. Wanjura Jason K. Ward

Texas A&M University Texas A&M University China Agricultural University Cotton Incorporated USDA-ARS

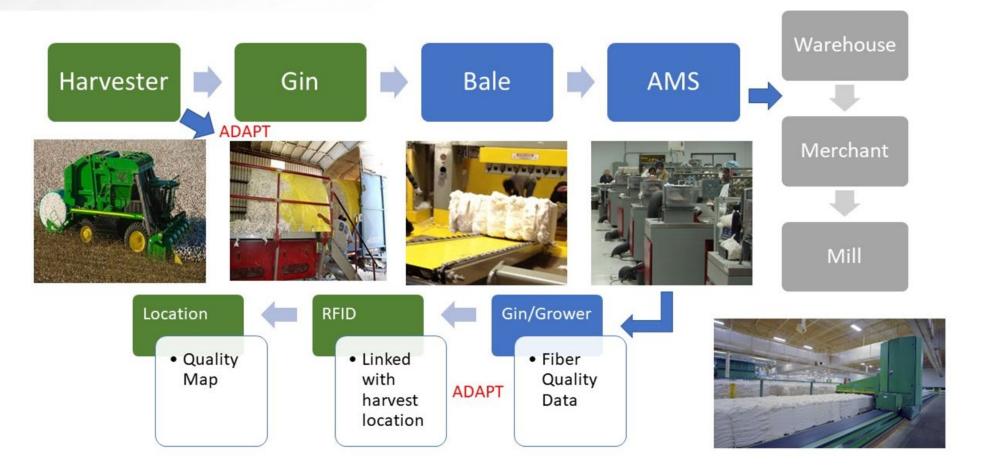
Round Module Cotton Harvesting System



- Majority of cotton harvested in US
- Reduced harvesting labor from 1.5 hr/ha to 0.4 hr/ha
- 2500 kg modules (on newest models), wrapped in plastic film with integral RFID tags

Opportunities with RFID

- Link data from field to gin (and beyond)
- Easily integrate additional sensor measurements in gin process control systems
- Automated inventory
 management at gin
- Current utilization of RFID data is limited



Current Data Flow in Cotton Harvesting and Processing

Challenges with Round Module System

- Plastic contamination
- Moisture
 - Modules are better protected from rain, but reduced moisture exchange with ambient air can create problems
- Logistics

Production

Deliver to module feeder

Staging

Loading

Truck transport

Gin yard staging

Trailer Transport

Unloading

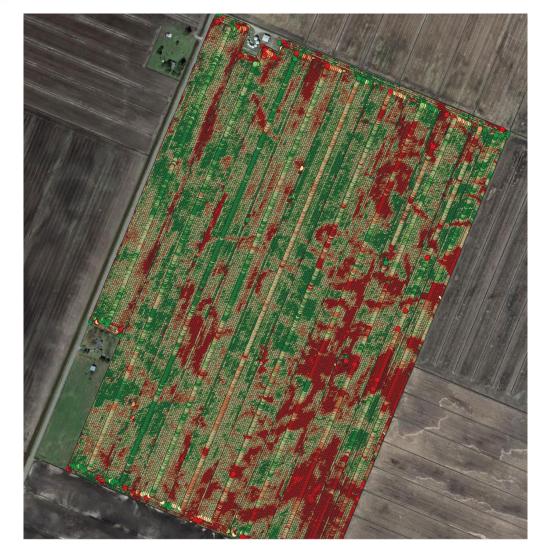
Objectives

Overall goal: Develop data-driven management practices to increase gin efficiency and improve fiber quality.

- 1. Map fiber quality to field locations.
- 2. Optimize logistics of round module handling.
- 3. Automate detection of wrap damage.
- 4. Develop a round module moisture measurement system.
- 5. Develop tools to integrate RFID data with gin management software.

Machine Data Streams

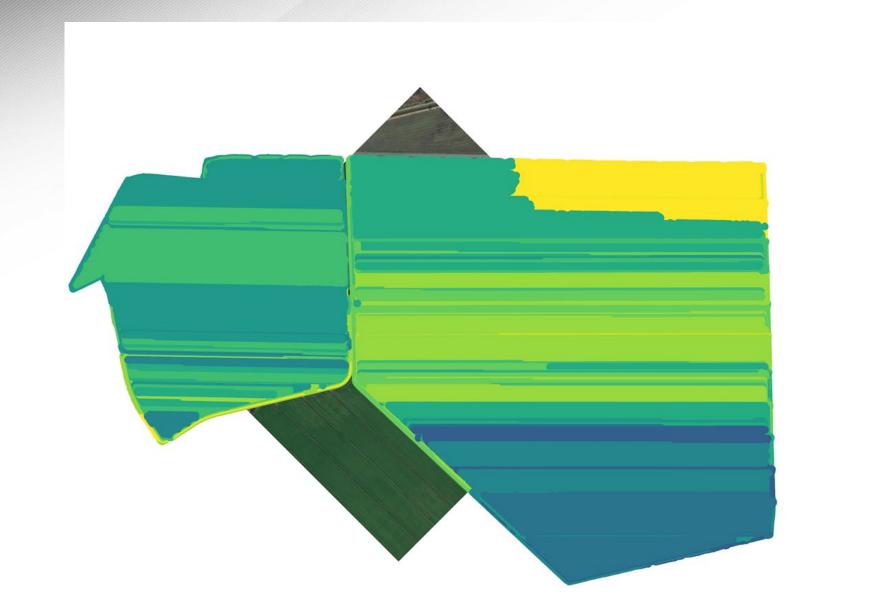
- Generated by cotton harvester
 - Yield Maps
 - Harvest ID (HID) file


module_id	module_sn	Lat	Lon	GMT_Date	GMT_Time	Tag_Cour	r Client	Farm	Field	Variety	Machine_	Operator	Gin_I
3500B98806110B040D51E36D	17403339629			11/22/2018	23:32:09	11	1			MIX	1N0C690P		
3500B98806110A040D51E36C	17403339628			11/23/2018	0:21:35	11				MIX	1N0C690P		:
3500B988061109040D51E36B	17403339627			11/23/2018	0:43:52	11				MIX	1N0C690P		:
3500B988061108040D51E36A	17403339626			11/23/2018	1:09:44	11				MIX	1N0C690P		
3500B988061107040D51E369	17403339625			11/23/2018	1:35:54	10)			MIX	1N0C690P		
3500B988061106040D51E368	17403339624			11/23/2018	1:54:13	10)			MIX	1N0C690P		
3500B988061105040D51E367	17403339623			11/23/2018	2:16:59	10) (MIX	1N0C690P		
3500B988061104040D51E366	17403339622			11/23/2018	2:51:52	11	. :			MIX	1N0C690P		
3500B988061103040D51E365	17403339621			11/23/2018	3:15:29	10				MIX	1N0C690P		1

HID File

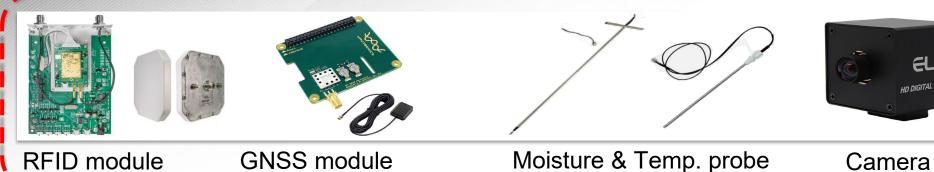
Discrete Module Path

Gin Data Streams

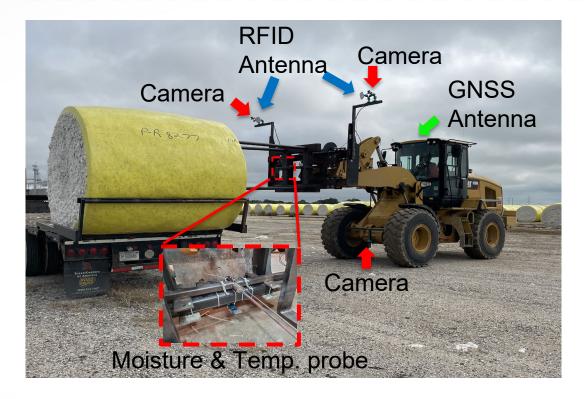

- Classing data by Permanent Bale Identifier (PBI)
- Gin software associates each bale with the module it was produced from
 - Average data from bales in a module

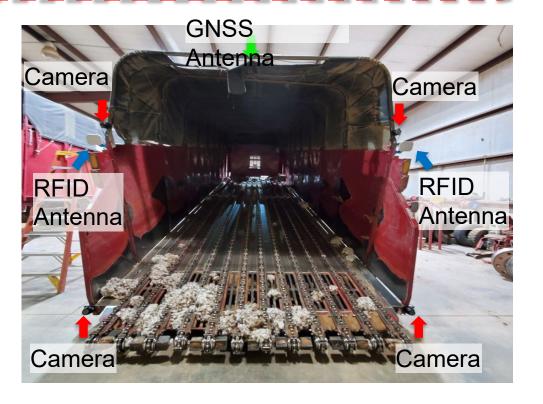
Load #	Serial ID	Bale #	Weight
3231	17403339554		516
3231	17403339554		525
3231	17403339554		524
3231	17403339554		521
3231	17403339554		501

Gr	L	St	Mic	Strn	CGr	Len	Unif	Value	CValu	BlValu
41	4	38	4.7	32	41-1	119	82	54.35	235	278.27
31	3	37	4.8	34.1	31-2	116	83.8	56.5	450	294.37
41	4	37	4.8	35	41-1	117	83.9	54.5	250	283.4
41	4	38	4.7	34	41-1	118	83.3	54.55	255	282.02
41	3	37	4.8	34.4	41-1	116	84.2	55.15	315	274.1
31	4	37	4.8	33.7	31-2	114	81.8	54.95	295	270.9
31	3	37	4.8	34.1	31-2	115	82.5	56.4	440	282
41	4	37	4.8	33.5	41-1	117	83.2	54.5	250	279.04
41	3	37	4.9	33.5	41-3	115	83.3	55.05	305	275.8
31	4	37	4.9	32.6	31-2	116	83.1	55	300	272.25
31	3	37	4.8	32.7	31-2	115	83	56.4	440	276.92


Micronaire Map

Cotton Module Monitoring System





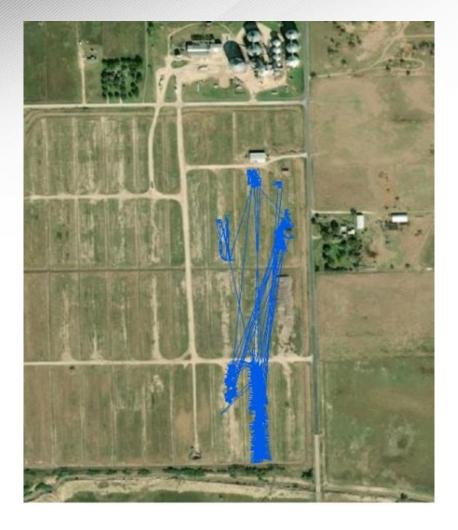
RFID module

GNSS module

Moisture & Temp. probe

Wrap Damage

(a)



(b)

Module Tracking at Gin

Gin Logistics

Gin	Operations	Modules Handled	Route	Time per Module	% Time Loader Moving	Wrap Damage
1	7	481	28.9 mi	1.46 min	33.3%	3.12%
2	16	1,961	61.6 mi	1.73 min	29.6%	4.18%

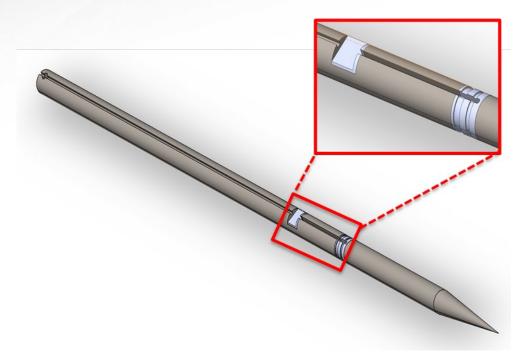
- 2021 data similar to previous seasons
- Loader used for handling at the gin spends ~60% time idle
 - Potential for more efficient use of labor/machinery but requires coordinated logistics
- Wrap damage at studied gins has averaged 3-4%
 - All gins have been experienced in handling round modules

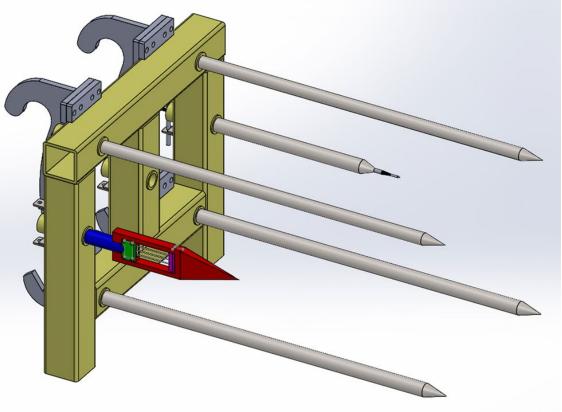
Deep Learning for Wrap Damage Detection

- Automatically identify damaged modules to alert management for need for special handling
- Using YOLO v5 to identify areas of damaged wrap
 - Background objects (clouds, other modules) resemble loose cotton, resulting in misclassifying some modules as damaged
- Used U2-net for background removal
- Trained and validated model, tested on both images captured manually and with module monitoring system

Module Monitoring System Images- Background Removal

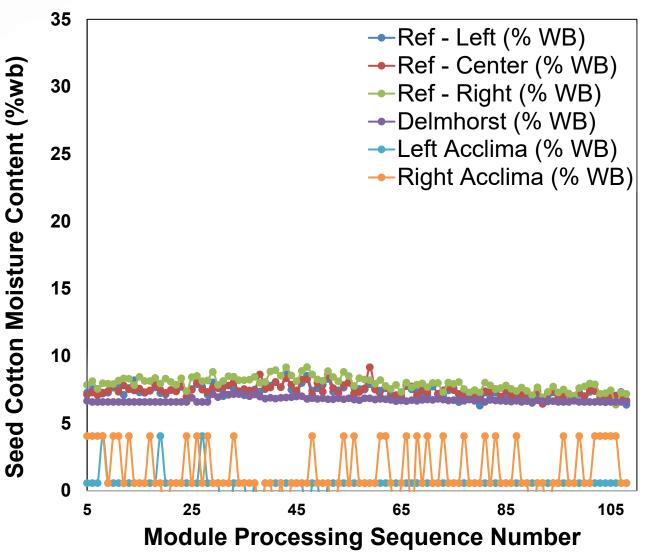
- More challenging detection problem
- Background removal improved accuracy on test data set to 78.4%


- Phone camera images
- Accuracy on test data set = 82.4%


Moisture Sensing on Loader

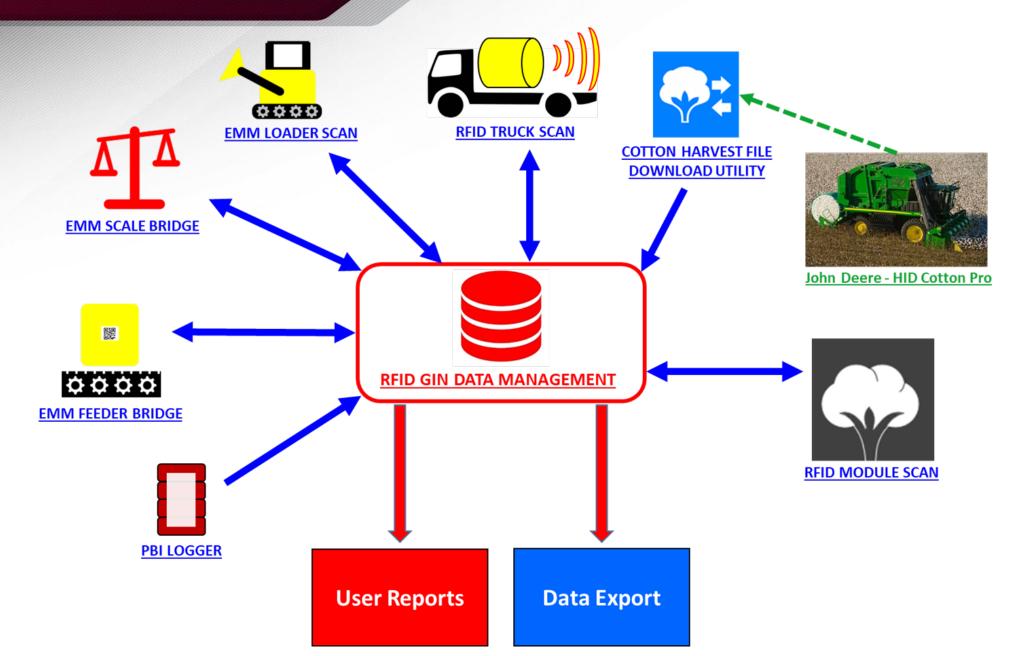
Integral Resistance-Based

- Delmhorst resistance probe
- Acclima TDR microwave sensors


Add-on Resistance and TDR Microwave Probes

Preliminary Moisture Sensing Results

- Delmhorst resistance probe tracked reference moisture values more closely than TDR probes
 - TDR probe holder is being redesigned to improve exposure to cotton
- Seed cotton was dry and the range in reference moisture values was small and likely inadequate to draw conclusions



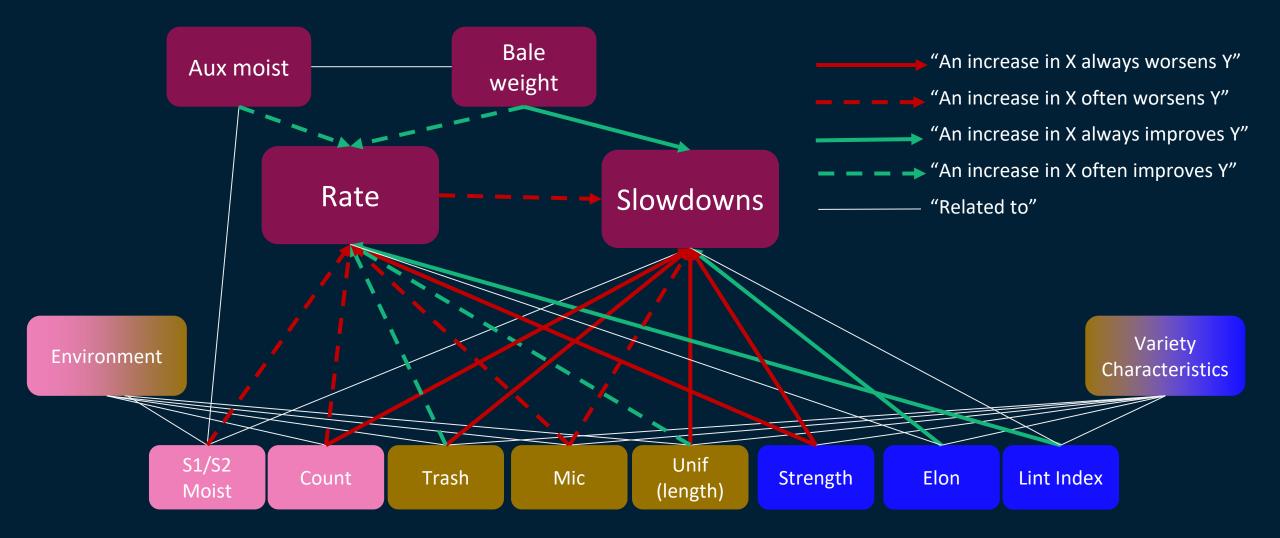
RFID Gin Data Management Utility

- Previous solutions are research-driven
 - Need tools to facilitate use of RFID technology by ginners and growers
- USDA-ARS worked collaboratively with a software developer to create an open-source database utility that compiles all HID data, module scan information, PBI Logger data, and facilitates transportation logistics
- Hardware and Setup
 - Windows 10 PC running in gin office
 - Setup client, farm, field, driver and truck names pre-season
 - Setup naming convention for load names
 - Input GPS boundaries for module storage yards and module feeder
 - Import settings for HID Download Utility and RFID Module Scan

BIOLOGICAL & AGRICULTURAL ENGINEERING TEXAS A&M UNIVERSITY

AW

Data-Driven Cotton Industry of the Future


- Management decisions driven by data
 - Data collected with much greater precision- temporally, spatially
 - Precision agriculture, precision ginning, precision textile manufacturing
- Increasing levels of automation
 - Including data analytics
- Increased data sharing from "dirt to shirt"
 - Traceability
 - Data has value!

Capturing More Value From Data at the Gin

- Collaborative project with Cotton Incorporated, SAS, researchers, gin managers
- Used data from two gins over multiple seasons to model ginning rate
 - Data from over 500,000 bales will be used in 2022
- SAS used machine learning to develop model
 "Big data" from the gin
- Much of variability can be explained by knowledge of farm, field, cultivar, and moisture content

Outcome

Summary

- RFID-tagged modules facilitate data sharing along the supply chain

 Connected data from field to bale
- Other important data can be associated with a module's RFID number
 - Demonstrated use of images, moisture content
 - Potentially farm production data, quality sensors on harvesters
- RFID technology has value in inventory management and logistics optimization
- Greater use of data should generate value throughout supply chain

Acknowledgments

- Financial support and leadership of Cotton Incorporated
- Collaborators
- Cooperating farmers and ginners
- Students

Scan the code for links to references.

Thank you! robert.hardin@ag.tamu.edu