Session: Sustainability from a Technical View

Title: Biodegradation Performance of Dyed and Finished Cotton in Various Natural Environmental Settings

Speaker: Mary Ankeny, Cotton Incorporated, Cary, NC, USA

Presentations are available in the conference archive: https://baumwollboerse.de/en/competencies/international-cotton-conference/speeches/

Conference Organization

Faserinstitut Bremen e.V., Bremen, Germany. E-Mail: conference@faserinstitut.de
Bremer Baumwollboerse, Bremen, Germany. E-Mail: info@baumwollboerse.de

BIODEGRADATION PERFORMANCE OF DYED AND FINISHED COTTON IN VARIOUS NATURAL ENVIRONMENTAL SETTINGS.

By: Mary Ankeny, Cotton Incorporated International Cotton Conference

September 29, 2022 Bremen, Germany

Presentation Overview

- Basis for this Study
- Study One:
- Aquatic Degradation of Textile Fibers
- Study Two:
- Effect of Dyes and Finishes on Aquatic Degradation of Cotton
- Study Three:
- Effect of Finishes on Cotton's Degradation in Soil
- Study Four:
- Simulated Landfill Degradation of Cotton

Microplastics, Nanoplastics, and Microfibers

> "Microplastics" first appears in scientific literature in $2004{ }^{1}$ (as an environmental pollutant) however a clear definition is not provided
$>$ Over 61,000 scientific journal articles published to date

Brevia

Microplastics and Microfibers

> Microfibers are synthetic, manmade, and natural fibers ($<5 \mathrm{~mm}$) released from fabrics during laundering ${ }^{1}$ or other physical processes such as wearing the garment

Awareness Grows

More consumers are aware of issues in textile production, especially for manmade fibers

Percentage of consumers who are aware of microplastic waste

Study 1: Aquatic Biodegradation of Textile Fibers

Aquatic Biodegradation of Textile Fibers from Spun Yarns

Biodegradation of textile yarns in different aquatic environment Plateau Phase Mean \pm Standard Error			
Samples		Biodegradation (\%)	
	Neuse River WWTP*	Lake Water	Seawater
MCC (Reference Material)	108.06 ± 0.04	79.63 ± 0.18	70.94 ± 0.38
100\% Cotton Spun Yarns	90.88 ± 0.04	77.15 ± 0.37	49.3 ± 0.15
100\% Rayon Spun Yarns	90.59 ± 0.04	73.43 ± 0.24	48.16 ± 0.93
50/50 Polyester/Cotton Spun Yarns	46.72 ± 0.03	33.86 ± 0.22	14.57 ± 0.36
100\% Polyester Spun Yarns	5.83 ± 0.01	Not Appreciable	4.23 ± 0.34

*Prior to subtraction of nitrification reaction

Biodegradation in Lake Water
50/50 Polyester/Cotton Yarns

100\% Polyester Yarns

Biodegradation in Seawater
50/50 Polyester/Cotton Yarns
100\% Polyester Yarns

SEM images of residual solids after biodegradation

Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton in Aquatic Environments

Hypothesis:

Cotton microfibers treated with typical dyes and finishes biodegrade in aquatic environments

Cotton - Dyed
Reactive Blue 19

Cotton - Durable Press
DMDHEU \& Catalyst

Cotton - Softener
Modified amino functional silicone

Cotton - Water Repellent
C6 \& PBI
Non-PFOA fluorochemical Polyfunctional blocked isocyanate

Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton Fabrics in Aquatic Environments

Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton Fabrics in Aquatic Environments

Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in an Aqueous Medium

$\mathrm{N}=3$ all materials, except Oak Leaves ($\mathrm{N}=2$)

Measurements - RSA PF-8000 (Oxygen Uptake)

Material Added - $\mathbf{1 0 0} \mathbf{~ m g}$ of yarns $/ 500 \mathrm{ml}$ Test Medium

Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton Fabrics in Aquatic Environments

SEM images of the fibers during biodegradation using as inoculum 30 ppm of Activated Sludge solids from the Neuse River WWTP

Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton Fabrics in Aquatic Environments

Freshwater

 \title{
Study 2: Effect of Dyes and Finishes on the Biodegradation
 \title{
Study 2: Effect of Dyes and Finishes on the Biodegradation of Cotton Fabrics in Aquatic Environments
} of Cotton Fabrics in Aquatic Environments
}

Saltwater

Days

Abstract

 ,教

Summary of Freshwater and Seawater Inoculum

- The freshwater inoculum showed good activity during the experiment. MCC degraded completely during the 109 days of experiment.
- The finishes also affect the biodegradability in lake water conditions:
- The control microfibers (no finish) degraded by 84%, followed by: water repellent (67\%), softener (50\%), dyed (47\%), and durable press (38\%).
- The seawater inoculum showed good activity for most of the samples in the study. MCC degraded $>60 \%$ during the 44 days of the experiment.
- The finishes also affect the biodegradability in seawater conditions:
- The control cotton (no finish) did not degrade. This trial is being repeated
- The other fibers degraded: water repellant (52\%), dyed (51\%), softener (25\%), durable press (16\%).

Effect of Finishes on Cotton Biodegradation in Aquatic Environments

Surface Properties/Characteristics Related with Biodegradation

Surface Chemical Composition by XPS

Sample	C 1s (\%)	O 1s (\%)	Si 2p (\%)	F 1s (\%)	N 1s (\%)	Cl 2p (\%)
No Finish	66	34	0	0	0	0
Dyed	63	35	2	0	0	0
Durable Press	64	33	0	0	2	1
Softener Water Repellent 54	37	9	0	0	0	

Water Absorbency of Textiles and Hydrophilicity
Softener

Effect of Finishes on Cotton Biodegradation in Aquatic Environments

Surface Properties/Characteristics Related with Biodegradation

Study 3: Effect of Finishes on Cotton's Degradation in soil

Composting simulation study conducted at Cornell University

Soil Blank	Wax + PBI
Control (no finish)	C6 +PBI
Polyethylene Softener	Antimicrobial (silver based)
Silicone Softener	DMDHEU + Catalyst
Partially Blocked Isocyanite (PB)	DMUG + Catalyst
	Flame Retardant

Study 3: Effect of Finishes on Cotton's Degradation in Soil

[^0] https://doi.org/10.1007/s10570-020-03666-w

- By appearance
- PBI Only, Wax \& PBI, and Silicone softener look most degraded after 154 days
- DMDHEU \& Catalyst and Flame Retardant look least degraded after 154 days
- By weight loss
- PBI Only, Silicone Softener, and Antimicrobial lost the most weight
- DMDHEU \& Catalyst and DMUG \& Catalyst lost the least amount of weight
- By total CO2 production
- Control, Silicone softener, and Polyethylene softener produced the most CO_{2} after 154 days
- DMDHEU \& Catalyst and Wax \& PBI produced the least CO_{2} after 154 days

U.S. Disposal Statistics: Textile Waste

In 2018 the U.S. generated
17 Million Tons of Textile Waste ,

Of that waste

11.3 Million Tons were Landfilled
\rightarrow Clothing and Footwear Subset

- Generated: 13 M Tons
- Landfilled: 9.1 M Tons
- Recycled: 1.7 M Tons
- Incinerated: 2.2 M Tons

Study 4: Simulated Landfill Environment Decomposition

Objectives:

1. Determine if cotton fabric, that has been dyed and finished, will decompose in a simulated landfill environment.
2. Determine if polyester fabric will decompose in a simulated landfill environment.

Study 4: Simulated Landfill Environment Decomposition

Samples Tested

Treatment	Description
1	inoculum + dyed cotton fabric (Reactive Black 5)
2	inoculum + bleached cotton fabric
3	inoculum + cotton fabric with silicone softener finish
4	inoculum + cotton fabric with durable press finish (DMDHEU)
5	inoculum (background methane)
6	

Study 4: Simulated Landfill Environment Decomposition

Preliminary Summary of Landfill Study

- All cotton fabrics underwent biodegradation in the simulated landfill environment.
- Similar to other environments, the cotton with the DMDHEU finish degraded more slowly than its counterparts.
- The polyester fabric did not degrade and behaved similar to the blank.

Acknowledgements

NC STATE College of UNIVERSITY Natural Resources

Department of Forest Biomaterials
Dr. Richard Venditti
Dr. Joel Pawlak
Dr. Marielis Zambrano

BioscA $0^{\text {ncsate unebary }}$
 ENGINEERING

Environmental Analysis Lab

> Dr. Jay Chen
> Dr. Cong Tu

Product Evaluation Lab Color Services Lab
Mary Ankeny, MSc
Dr. Jesse Daystar

Dr. Morton Barlaz
Dr. Florentino de la Cruz

Cornell University
Dr. Margaret Frey
Dr. Mehmet Ozturk

BIOTECHNOLOGY
 [NC STATEUNIVERSTY

Dr. Carlos Goller Dr. Robert M. Kelly

[^0]: Smith, S., Ozturk, M. \& Frey, M. Soil biodegradation of cotton fabrics treated with common finishes. Cellulose 28, 4485-4494 (2021).

